MathDB
Miklos Schweitzer 1971_6

Source:

October 29, 2008
functionlimitintegrationreal analysisreal analysis unsolved

Problem Statement

Let a(x) a(x) and r(x) r(x) be positive continuous functions defined on the interval [0,) [0,\infty), and let lim infx(xr(x))>0. \liminf_{x \rightarrow \infty} (x-r(x)) >0. Assume that y(x) y(x) is a continuous function on the whole real line, that it is differentiable on [0,) [0, \infty), and that it satisfies y(x)=a(x)y(xr(x)) y'(x)=a(x)y(x-r(x)) on [0,) [0, \infty). Prove that the limit limxy(x)exp{0xa(u)du} \lim_{x \rightarrow \infty}y(x) \exp \left\{ -%Error. "diaplaymath" is a bad command. \int_0^x a(u)du \right \} exists and is finite. I. Gyori