MathDB

2015 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(21)
5
2

Rounding Necessarily Increases the Answer

Amelia needs to estimate the quantity abc\tfrac ab-c, where aa, bb, and cc are large positive integers. She rounds each of the integers so that the calculation will be easier to do mentally. In which of these situations will her answer necessarily be greater than the exact value of abc\tfrac ab-c?
<spanclass=latexbold>(A)</span>She rounds all three numbers up.<span class='latex-bold'>(A) </span>\text{She rounds all three numbers up.}
<spanclass=latexbold>(B)</span>She rounds a and b up, and she rounds c down.<span class='latex-bold'>(B) </span>\text{She rounds }a\text{ and }b\text{ up, and she rounds }c\text{ down.}
<spanclass=latexbold>(C)</span>She rounds a and c up, and she rounds b down.<span class='latex-bold'>(C) </span>\text{She rounds }a\text{ and }c\text{ up, and she rounds }b\text{ down.}
<spanclass=latexbold>(D)</span>She rounds a up, and she rounds b and c down.<span class='latex-bold'>(D) </span>\text{She rounds }a\text{ up, and she rounds }b\text{ and }c\text{ down.}
<spanclass=latexbold>(E)</span>She rounds c up, and she rounds a and b down.<span class='latex-bold'>(E) </span>\text{She rounds }c\text{ up, and she rounds }a\text{ and }b\text{ down.}
9
2

Round-Robin Tournament

A league with 1212 teams holds a round-robin tournament, with each team playing every other team once. Games either end with one team victorious or else end in a draw. A team scores 22 points for every game it wins and 11 point for every game it draws. Which of the following is <spanclass=latexbold>not</span><span class='latex-bold'>not</span> a true statement about the list of 1212 scores?
<spanclass=latexbold>(A)</span>There must be an even number of odd scores.<span class='latex-bold'>(A) </span>\text{There must be an even number of odd scores.}
<spanclass=latexbold>(B)</span>There must be an even number of even scores.<span class='latex-bold'>(B) </span>\text{There must be an even number of even scores.}
<spanclass=latexbold>(C)</span>There cannot be two scores of 0.<span class='latex-bold'>(C) </span>\text{There cannot be two scores of 0.}
<spanclass=latexbold>(D)</span>The sum of the scores must be at least 100.<span class='latex-bold'>(D) </span>\text{The sum of the scores must be at least 100.}
<spanclass=latexbold>(E)</span>The highest score must be at least 12.<span class='latex-bold'>(E) </span>\text{The highest score must be at least 12.}

Modulo Ackermann

For every positive integer nn, let mod5(n)\operatorname{mod_5}(n) be the remainder obtained when nn is divided by 55. Define a function f:{0,1,2,3,}×{0,1,2,3,4}{0,1,2,3,4}f : \{0, 1, 2, 3, \dots\} \times \{0, 1, 2, 3, 4\} \to \{0, 1, 2, 3, 4\} recursively as follows: f(i,j)={mod5(j+1)if i=0 and 0j4f(i1,1)if i1 and j=0, andf(i1,f(i,j1))if i1 and 1j4f(i, j) = \begin{cases} \operatorname{mod_5}(j+1) & \text{if }i=0\text{ and }0\leq j\leq 4 \\ f(i-1, 1) & \text{if }i\geq 1\text{ and }j=0 \text{, and}\\ f(i-1, f(i, j-1)) & \text{if }i\geq 1\text{ and }1\leq j\leq 4 \end{cases} What is f(2015,2)f(2015, 2)?
<spanclass=latexbold>(A)</span>0<spanclass=latexbold>(B)</span>1<spanclass=latexbold>(C)</span>2<spanclass=latexbold>(D)</span>3<spanclass=latexbold>(E)</span>4<span class='latex-bold'>(A) </span>0 \qquad<span class='latex-bold'>(B) </span>1 \qquad<span class='latex-bold'>(C) </span>2 \qquad<span class='latex-bold'>(D) </span>3 \qquad<span class='latex-bold'>(E) </span>4

Recursion of Circles

A collection of circles in the upper half-plane, all tangent to the xx-axis, is constructed in layers as follows. Layer L0L_0 consists of two circles of radii 70270^2 and 73273^2 that are externally tangent. For k1k\geq 1, the circles in j=0k1Lj\textstyle\bigcup_{j=0}^{k-1} L_j are ordered according to their points of tangency with the xx-axis. For every pair of consecutive circles in this order, a new circle is constructed externally tangent to each of the two circles in the pair. Layer LkL_k consists of the 2k12^{k-1} circles constructed in this way. Let S=j=06LjS=\textstyle\bigcup_{j=0}^6 L_j, and for every circle CC denote by r(C)r(C) its radius. What is CS1r(C)?\sum_{C\in S}\dfrac1{\sqrt{r(C)}}?
[asy] import olympiad; size(350); defaultpen(linewidth(0.7)); // define a bunch of arrays and starting points pair[] coord = new pair[65]; int[] trav = {32,16,8,4,2,1}; coord[0] = (0,73^2); coord[64] = (2*73*70,70^2); // draw the big circles and the bottom line path arc1 = arc(coord[0],coord[0].y,260,360); path arc2 = arc(coord[64],coord[64].y,175,280); fill((coord[0].x-910,coord[0].y)--arc1--cycle,gray(0.78)); fill((coord[64].x+870,coord[64].y+425)--arc2--cycle,gray(0.78)); draw(arc1^^arc2); draw((-930,0)--(70^2+73^2+850,0)); // We now apply the findCenter function 63 times to get // the location of the centers of all 63 constructed circles. // The complicated array setup ensures that all the circles // will be taken in the right order for(int i = 0;i<=5;i=i+1) { int skip = trav; for(int k=skip;k<=64 - skip; k = k + 2*skip) { pair cent1 = coord[k-skip], cent2 = coord[k+skip]; real r1 = cent1.y, r2 = cent2.y, rn=r1*r2/((sqrt(r1)+sqrt(r2))^2); real shiftx = cent1.x + sqrt(4*r1*rn); coord[k] = (shiftx,rn); } // Draw the remaining 63 circles } for(int i=1;i<=63;i=i+1) { filldraw(circle(coord,coord.y),gray(0.78)); }[/asy]
<spanclass=latexbold>(A)</span>28635<spanclass=latexbold>(B)</span>58370<spanclass=latexbold>(C)</span>71573<spanclass=latexbold>(D)</span>14314<spanclass=latexbold>(E)</span>1573146<span class='latex-bold'>(A) </span>\dfrac{286}{35}\qquad<span class='latex-bold'>(B) </span>\dfrac{583}{70}\qquad<span class='latex-bold'>(C) </span>\dfrac{715}{73}\qquad<span class='latex-bold'>(D) </span>\dfrac{143}{14}\qquad<span class='latex-bold'>(E) </span>\dfrac{1573}{146}