MathDB
Recursion of Circles

Source: 2015 AMC 12A #25

February 4, 2015
functionanalytic geometryAMCInversion

Problem Statement

A collection of circles in the upper half-plane, all tangent to the xx-axis, is constructed in layers as follows. Layer L0L_0 consists of two circles of radii 70270^2 and 73273^2 that are externally tangent. For k1k\geq 1, the circles in j=0k1Lj\textstyle\bigcup_{j=0}^{k-1} L_j are ordered according to their points of tangency with the xx-axis. For every pair of consecutive circles in this order, a new circle is constructed externally tangent to each of the two circles in the pair. Layer LkL_k consists of the 2k12^{k-1} circles constructed in this way. Let S=j=06LjS=\textstyle\bigcup_{j=0}^6 L_j, and for every circle CC denote by r(C)r(C) its radius. What is CS1r(C)?\sum_{C\in S}\dfrac1{\sqrt{r(C)}}?
[asy] import olympiad; size(350); defaultpen(linewidth(0.7)); // define a bunch of arrays and starting points pair[] coord = new pair[65]; int[] trav = {32,16,8,4,2,1}; coord[0] = (0,73^2); coord[64] = (2*73*70,70^2); // draw the big circles and the bottom line path arc1 = arc(coord[0],coord[0].y,260,360); path arc2 = arc(coord[64],coord[64].y,175,280); fill((coord[0].x-910,coord[0].y)--arc1--cycle,gray(0.78)); fill((coord[64].x+870,coord[64].y+425)--arc2--cycle,gray(0.78)); draw(arc1^^arc2); draw((-930,0)--(70^2+73^2+850,0)); // We now apply the findCenter function 63 times to get // the location of the centers of all 63 constructed circles. // The complicated array setup ensures that all the circles // will be taken in the right order for(int i = 0;i<=5;i=i+1) { int skip = trav; for(int k=skip;k<=64 - skip; k = k + 2*skip) { pair cent1 = coord[k-skip], cent2 = coord[k+skip]; real r1 = cent1.y, r2 = cent2.y, rn=r1*r2/((sqrt(r1)+sqrt(r2))^2); real shiftx = cent1.x + sqrt(4*r1*rn); coord[k] = (shiftx,rn); } // Draw the remaining 63 circles } for(int i=1;i<=63;i=i+1) { filldraw(circle(coord,coord.y),gray(0.78)); }[/asy]
<spanclass=latexbold>(A)</span>28635<spanclass=latexbold>(B)</span>58370<spanclass=latexbold>(C)</span>71573<spanclass=latexbold>(D)</span>14314<spanclass=latexbold>(E)</span>1573146<span class='latex-bold'>(A) </span>\dfrac{286}{35}\qquad<span class='latex-bold'>(B) </span>\dfrac{583}{70}\qquad<span class='latex-bold'>(C) </span>\dfrac{715}{73}\qquad<span class='latex-bold'>(D) </span>\dfrac{143}{14}\qquad<span class='latex-bold'>(E) </span>\dfrac{1573}{146}