How many noncongruent integer-sided triangles with positive area and perimeter less than 15 are neither equilateral, isosceles, nor right triangles?<spanclass=′latex−bold′>(A)</span>3<spanclass=′latex−bold′>(B)</span>4<spanclass=′latex−bold′>(C)</span>5<spanclass=′latex−bold′>(D)</span>6<spanclass=′latex−bold′>(E)</span>7