Subcontests
(30)Obtuse triangle
In the obtuse triangle ABC, AM=MB,MD⊥BC,EC⊥BC. If the area of △ABC is 24, then the area of △BED is[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(11pt));
pair A = (6.5,3.2), B = origin, C = (5.0), D = (3.3,0);
pair Xc = (C.x,4), Xd = (D.x,4), E = intersectionpoint(A--B,C--Xc), M = intersectionpoint(D--Xd, A--B);
draw(C--A--B--C--E--D--M);
label("A",A,NE);
label("B",B,W);
label("C",C,SE);
label("D",D,S);
label("E",E,N);
label("M",M,N);
draw(rightanglemark(D,C,E,7)^^rightanglemark(B,D,M,7));
[/asy]<spanclass=′latex−bold′>(A)</span>9<spanclass=′latex−bold′>(B)</span>12<spanclass=′latex−bold′>(C)</span>15<spanclass=′latex−bold′>(D)</span>18<spanclass=′latex−bold′>(E)</span>not uniquely determined Altitude CH and area of triangle ABC
A right triangle ABC with hypotenuse AB has side AC=15. Altitude CH divides AB into segments AH And HB, with HB=16. The area of △ABC is:
[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(11pt));
pair A = origin, H = (5,0), B = (13,0), C = (5,6.5);
draw(C--A--B--C--H^^rightanglemark(C,H,B,16));
label("A",A,W);
label("B",B,E);
label("C",C,N);
label("H",H,S);
label("15",C/2,NW);
label("16",(H+B)/2,S);
[/asy]
<spanclass=′latex−bold′>(A)</span>120<spanclass=′latex−bold′>(B)</span>144<spanclass=′latex−bold′>(C)</span>150<spanclass=′latex−bold′>(D)</span>216<spanclass=′latex−bold′>(E)</span>1445 Trapezoid
Figure ABCD is a trapezoid with AB∣∣DC,AB=5,BC=32,∡BCD=45∘, and ∡CDA=60∘. The length of DC is<spanclass=′latex−bold′>(A)</span>7+323<spanclass=′latex−bold′>(B)</span>8<spanclass=′latex−bold′>(C)</span>921<spanclass=′latex−bold′>(D)</span>8+3<spanclass=′latex−bold′>(E)</span>8+33 Boys, girls, and teachers
In a certain school, there are three times as many boys as girls and nine times as many girls as teachers. Using the letters b,g,t to represent the number of boys, girls, and teachers, respectively, then the total number of boys, girls, and teachers can be represented by the expression<spanclass=′latex−bold′>(A)</span>31b<spanclass=′latex−bold′>(B)</span>2737b<spanclass=′latex−bold′>(C)</span>13g<spanclass=′latex−bold′>(D)</span>2737g<spanclass=′latex−bold′>(E)</span>2737t Rectangle and circle
A rectangle intersects a circle as shown: AB=4, BC=5, and DE=3. Then EF equals:[asy]size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair D=origin, E=(3,0), F=(10,0), G=(12,0), H=(12,1), A=(0,1), B=(4,1), C=(9,1), O=circumcenter(B,C,F);
draw(D--G--H--A--cycle);
draw(Circle(O, abs(O-C)));
label("A", A, NW);
label("B", B, NW);
label("C", C, NE);
label("D", D, SW);
label("E", E, SE);
label("F", F, SW);label("4", (2,0.85), N);
label("3", D--E, S);
label("5", (6.5,0.85), N);
[/asy]
(A)6(B)7(C)320(D)8(E)9 triple (a,b,c)
The number of triples (a,b,c) of positive integers which satisfy the simultaneous equations \begin{align*} ab+bc &= 44,\\ ac+bc &= 23, \end{align*} is<spanclass=′latex−bold′>(A)</span>0<spanclass=′latex−bold′>(B)</span>1<spanclass=′latex−bold′>(C)</span>2<spanclass=′latex−bold′>(D)</span>3<spanclass=′latex−bold′>(E)</span>4