The number of distinct pairs of integers (x,y) such that 0 < x < y \text{and} \sqrt{1984} = \sqrt{x} + \sqrt{y} is<spanclass=′latex−bold′>(A)</span>0<spanclass=′latex−bold′>(B)</span>1<spanclass=′latex−bold′>(C)</span>2<spanclass=′latex−bold′>(D)</span>3<spanclass=′latex−bold′>(E)</span>7