MathDB
smallest a+b

Source:

October 16, 2005

Problem Statement

If aa and bb are positive real numbers and each of the equations x^2+ax+2b = 0 \text{and}  x^2+2bx+a = 0 has real roots, then the smallest possible value of a+ba+b is
<spanclass=latexbold>(A)</span>2<spanclass=latexbold>(B)</span>3<spanclass=latexbold>(C)</span>4<spanclass=latexbold>(D)</span>5<spanclass=latexbold>(E)</span>6<span class='latex-bold'>(A) </span>2\qquad <span class='latex-bold'>(B) </span>3\qquad <span class='latex-bold'>(C) </span>4\qquad <span class='latex-bold'>(D) </span>5\qquad <span class='latex-bold'>(E) </span>6