For any complex number w=a+bi, ∣w∣ is defined to be the real number a2+b2. If w=cos40∘+isin40∘, then
∣w+2w2+3w3+⋯+9w9∣−1
equals<spanclass=′latex−bold′>(A)</span>91sin40∘<spanclass=′latex−bold′>(B)</span>92sin20∘<spanclass=′latex−bold′>(C)</span>91cos40∘<spanclass=′latex−bold′>(D)</span>181cos20∘<spanclass=′latex−bold′>(E)</span> none of these