MathDB
Trig Series

Source:

October 24, 2005
trigonometryabsolute valuecomplex numbers

Problem Statement

For any complex number w=a+biw = a + bi, w|w| is defined to be the real number a2+b2\sqrt{a^2 + b^2}. If w=cos40+isin40w = \cos{40^\circ} + i\sin{40^\circ}, then w+2w2+3w3++9w91 |w + 2w^2 + 3w^3 + \cdots + 9w^9|^{-1} equals
<spanclass=latexbold>(A)</span> 19sin40<spanclass=latexbold>(B)</span> 29sin20<spanclass=latexbold>(C)</span> 19cos40<spanclass=latexbold>(D)</span> 118cos20<spanclass=latexbold>(E)</span> none of these<span class='latex-bold'>(A)</span>\ \frac{1}{9}\sin{40^\circ} \qquad <span class='latex-bold'>(B)</span>\ \frac{2}{9}\sin{20^\circ} \qquad <span class='latex-bold'>(C)</span>\ \frac{1}{9}\cos{40^\circ} \qquad <span class='latex-bold'>(D)</span>\ \frac{1}{18}\cos{20^\circ} \qquad <span class='latex-bold'>(E)</span>\text{ none of these}