MathDB

1976 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(30)

What is true about the length of PQ?

[asy] size(150); dotfactor=4; draw(circle((0,0),4)); draw(circle((10,-6),3)); pair O,A,P,Q; O = (0,0); A = (10,-6); P = (-.55, -4.12); Q = (10.7, -2.86); dot("OO", O, NE); dot("OO'", A, SW); dot("PP", P, SW); dot("QQ", Q, NE); draw((2*sqrt(2),2*sqrt(2))--(10 + 3*sqrt(2)/2, -6 + 3*sqrt(2)/2)--cycle); draw((-1.68*sqrt(2),-2.302*sqrt(2))--(10 - 2.6*sqrt(2)/2, -6 - 3.4*sqrt(2)/2)--cycle); draw(P--Q--cycle); //Credit to happiface for the diagram[/asy]
In the adjoining figure, every point of circle O\mathit{O'} is exterior to circle O\mathit{O}. Let P\mathit{P} and Q\mathit{Q} be the points of intersection of an internal common tangent with the two external common tangents. Then the length of PQPQ is
<spanclass=latexbold>(A)</span>the average of the lengths of the internal and external common tangents<span class='latex-bold'>(A) </span>\text{the average of the lengths of the internal and external common tangents}\qquad
<spanclass=latexbold>(B)</span>equal to the length of an external common tangent if and only if circles O and O have equal radii<span class='latex-bold'>(B) </span>\text{equal to the length of an external common tangent if and only if circles }\mathit{O}\text{ and }\mathit{O'}\text{ have equal radii}\qquad
<spanclass=latexbold>(C)</span>always equal to the length of an external common tangent<span class='latex-bold'>(C) </span>\text{always equal to the length of an external common tangent}\qquad
<spanclass=latexbold>(D)</span>greater than the length of an external common tangent<span class='latex-bold'>(D) </span>\text{greater than the length of an external common tangent}\qquad
<spanclass=latexbold>(E)</span>the geometric mean of the lengths of the internal and external common tangents<span class='latex-bold'>(E) </span>\text{the geometric mean of the lengths of the internal and external common tangents}

Integer values of combinatoric identity

For integers kk and nn such that 1k<n1\le k<n, let Ckn=n!k!(nk)!C^n_k=\frac{n!}{k!(n-k)!}. Then (n2k1k+1)Ckn\left(\frac{n-2k-1}{k+1}\right)C^n_k is an integer
<spanclass=latexbold>(A)</span>for all k and n<span class='latex-bold'>(A) </span>\text{for all }k\text{ and }n\qquad
<spanclass=latexbold>(B)</span>for all even values of k and n, but not for all k and n<span class='latex-bold'>(B) </span>\text{for all even values of }k\text{ and }n,\text{ but not for all }k\text{ and }n\qquad
<spanclass=latexbold>(C)</span>for all odd values of k and n, but not for all k and n<span class='latex-bold'>(C) </span>\text{for all odd values of }k\text{ and }n,\text{ but not for all }k\text{ and }n\qquad
<spanclass=latexbold>(D)</span>if k=1 or n1, but not for all odd values k and n<span class='latex-bold'>(D) </span>\text{if }k=1\text{ or }n-1,\text{ but not for all odd values }k\text{ and }n\qquad
<spanclass=latexbold>(E)</span>if n is divisible by k, but not for all even values k and n<span class='latex-bold'>(E) </span>\text{if }n\text{ is divisible by }k,\text{ but not for all even values }k\text{ and }n

Locus of points P in the plane of an equilateral triangle

Given an equilateral triangle with side of length ss, consider the locus of all points P\mathit{P} in the plane of the triangle such that the sum of the squares of the distances from P\mathit{P} to the vertices of the triangle is a fixed number aa. This locus
<spanclass=latexbold>(A)</span>is a circle if a>s2<span class='latex-bold'>(A) </span>\text{is a circle if }a>s^2\qquad
<spanclass=latexbold>(B)</span>contains only three points if a=2s2 and is a circle if a>2s2<span class='latex-bold'>(B) </span>\text{contains only three points if }a=2s^2\text{ and is a circle if }a>2s^2\qquad
<spanclass=latexbold>(C)</span>is a circle with positive radius only if s2<a<2s2<span class='latex-bold'>(C) </span>\text{is a circle with positive radius only if }s^2<a<2s^2\qquad
<spanclass=latexbold>(D)</span>contains only a finite number of points for any value of a<span class='latex-bold'>(D) </span>\text{contains only a finite number of points for any value of }a\qquad
<spanclass=latexbold>(E)</span>is none of these<span class='latex-bold'>(E) </span>\text{is none of these}

Find the radius of circle O

[asy] //size(100);//local size(200); real r1=2; pair O=(0,0), D=(.5,.5*sqrt(3)), C=(D.x+.5*3,D.y), B, B_prime=endpoint(arc(D, 3, 0,-2)); B=B_prime; path c1=circle(O, r1); pair C=midpoint(D--B_prime); path arc2=arc(B_prime, 6/2, 158.25,250); draw(c1); draw(O--D); draw(D--C); draw(C--B_prime); pair A=beginpoint(arc2); draw(B_prime--A); //dot(O^^D^^C^^A); //dot(B_prime); label("\scriptsize{OO}",O,.6dir(D--O)); label("\scriptsize{CC}",C,.5dir(-55)); label("\scriptsize{DD}", D,.2NW); //label("\scriptsize{BB}",B,S); label("\scriptsize{BB}", B_prime, .5*dir(D--B_prime)); label("\scriptsize{AA}",A,.5dir(NE)); label("\tiny{2}", O--D, .45*LeftSide); label("\tiny{3}", D--C, .45*LeftSide); label("\tiny{6}", B_prime--A, .45*RightSide); label("\tiny{3}", waypoint(C--B_prime,.1), .45*N); //Credit to Klaus-Anton for the diagram[/asy]
In the adjoining figure, ABAB is tangent at AA to the circle with center OO; point DD is interior to the circle; and DBDB intersects the circle at CC. If BC=DC=3BC=DC=3, OD=2OD=2, and AB=6AB=6, then the radius of the circle is
<spanclass=latexbold>(A)</span>3+3<spanclass=latexbold>(B)</span>15/π<spanclass=latexbold>(C)</span>9/2<spanclass=latexbold>(D)</span>26<spanclass=latexbold>(E)</span>22<span class='latex-bold'>(A) </span>3+\sqrt{3}\qquad<span class='latex-bold'>(B) </span>15/\pi\qquad<span class='latex-bold'>(C) </span>9/2\qquad<span class='latex-bold'>(D) </span>2\sqrt{6}\qquad <span class='latex-bold'>(E) </span>\sqrt{22}

Find the true statements

In triangles ABCABC and DEFDEF, lengths AC, BC, DF,AC,~BC,~DF, and EFEF are all equal. Length ABAB is twice the length of the altitude of DEF\triangle DEF from FF to DEDE. Which of the following statements is (are) true?
<spanclass=latexbold>I.</span>ACB and DFE must be complementary.<span class='latex-bold'>I. </span>\angle ACB \text{ and }\angle DFE\text{ must be complementary.}
<spanclass=latexbold>II.</span>ACB and DFE must be supplementary.<span class='latex-bold'>II. </span>\angle ACB \text{ and }\angle DFE\text{ must be supplementary.}
<spanclass=latexbold>III.</span>The area of ABC must equal the area of DEF.{<span class='latex-bold'>III. </span>\text{The area of }\triangle ABC\text{ must equal the area of }\triangle DEF.}
<spanclass=latexbold>IV.</span>The area of ABC must equal twice the area of DEF.{<span class='latex-bold'>IV. </span>\text{The area of }\triangle ABC\text{ must equal twice the area of }\triangle DEF.}
<spanclass=latexbold>(A)</span><spanclass=latexbold>II.</span>only<spanclass=latexbold>(B)</span><spanclass=latexbold>III.</span>only<span class='latex-bold'>(A) </span><span class='latex-bold'>II. </span>\text{only}\qquad<span class='latex-bold'>(B) </span><span class='latex-bold'>III. </span>\text{only}\qquad
<spanclass=latexbold>(C)</span><spanclass=latexbold>IV.</span>only<spanclass=latexbold>(D)</span>I. and <spanclass=latexbold>III.</span>only<spanclass=latexbold>(E)</span><spanclass=latexbold>II.</span>and <spanclass=latexbold>III.</span>only<span class='latex-bold'>(C) </span><span class='latex-bold'>IV. </span>\text{only}\qquad<span class='latex-bold'>(D) </span>\text{I. }\text{and }<span class='latex-bold'>III. </span>\text{only}\qquad <span class='latex-bold'>(E) </span><span class='latex-bold'>II. </span>\text{and }<span class='latex-bold'>III. </span>\text{only}

Logic: Starring Pink Elephant and Wild Pig

Which of the following statements is (are) equivalent to the statement "If the pink elephant on planet alpha has purple eyes, then the wild pig on planet beta does not have a long nose"?
<spanclass=latexbold>I.</span><span class='latex-bold'>I. </span> "If the wild pig on planet beta has a long nose, then the pink elephant on planet alpha has purple eyes."
<spanclass=latexbold>II.</span><span class='latex-bold'>II. </span> "If the pink elephant on planet alpha does not have purple eyes, then the wild pig on planet beta does not have a long nose.
<spanclass=latexbold>III.</span><span class='latex-bold'>III. </span> "If the wild pig on planet beta has a long nose, then the pink elephant on planet alpha does not have purple eyes."
<spanclass=latexbold>IV.</span> <span class='latex-bold'>IV. </span> "The pink elephant on planet alpha does not have purple eyes, or the wild pig on planet beta does not have a long nose."
<spanclass=latexbold>(A)</span><spanclass=latexbold>I.</span>and <spanclass=latexbold>II.</span>only<spanclass=latexbold>(B)</span><spanclass=latexbold>III.</span>and <spanclass=latexbold>IV.</span>only<spanclass=latexbold>(C)</span><spanclass=latexbold>II.</span>and <spanclass=latexbold>IV.</span>only<spanclass=latexbold>(D)</span><spanclass=latexbold>II.</span>and <spanclass=latexbold>III.</span>only<spanclass=latexbold>(E)</span>and <spanclass=latexbold>III.</span>only<span class='latex-bold'>(A) </span><span class='latex-bold'>I. </span>\text{and }<span class='latex-bold'>II. </span>\text{only}\qquad<span class='latex-bold'>(B) </span><span class='latex-bold'>III. </span>\text{and }<span class='latex-bold'>IV. </span>\text{only}\qquad<span class='latex-bold'>(C) </span><span class='latex-bold'>II. </span>\text{and }<span class='latex-bold'>IV. </span>\text{only}\qquad<span class='latex-bold'>(D) </span><span class='latex-bold'>II. </span>\text{and }<span class='latex-bold'>III. </span>\text{only}\qquad <span class='latex-bold'>(E) </span>\text{and }<span class='latex-bold'>III. </span>\text{only}