MathDB
Integer values of combinatoric identity

Source: 1976 AHSME Problem 23

May 19, 2014
inequalitiesbinomial coefficientsAMC

Problem Statement

For integers kk and nn such that 1k<n1\le k<n, let Ckn=n!k!(nk)!C^n_k=\frac{n!}{k!(n-k)!}. Then (n2k1k+1)Ckn\left(\frac{n-2k-1}{k+1}\right)C^n_k is an integer
<spanclass=latexbold>(A)</span>for all k and n<span class='latex-bold'>(A) </span>\text{for all }k\text{ and }n\qquad
<spanclass=latexbold>(B)</span>for all even values of k and n, but not for all k and n<span class='latex-bold'>(B) </span>\text{for all even values of }k\text{ and }n,\text{ but not for all }k\text{ and }n\qquad
<spanclass=latexbold>(C)</span>for all odd values of k and n, but not for all k and n<span class='latex-bold'>(C) </span>\text{for all odd values of }k\text{ and }n,\text{ but not for all }k\text{ and }n\qquad
<spanclass=latexbold>(D)</span>if k=1 or n1, but not for all odd values k and n<span class='latex-bold'>(D) </span>\text{if }k=1\text{ or }n-1,\text{ but not for all odd values }k\text{ and }n\qquad
<spanclass=latexbold>(E)</span>if n is divisible by k, but not for all even values k and n<span class='latex-bold'>(E) </span>\text{if }n\text{ is divisible by }k,\text{ but not for all even values }k\text{ and }n