MathDB
Find sin θ+cos θ

Source: 1976 AHSME Problem 17

May 18, 2014
trigonometryAMC

Problem Statement

If θ\theta is an acute angle, and sin2θ=a\sin 2\theta=a, then sinθ+cosθ\sin\theta+\cos\theta equals
<spanclass=latexbold>(A)</span>a+1<spanclass=latexbold>(B)</span>(21)a+1<spanclass=latexbold>(C)</span>a+1a2a<span class='latex-bold'>(A) </span>\sqrt{a+1}\qquad<span class='latex-bold'>(B) </span>(\sqrt{2}-1)a+1\qquad<span class='latex-bold'>(C) </span>\sqrt{a+1}-\sqrt{a^2-a}\qquad
<spanclass=latexbold>(D)</span>a+1+a2a<spanclass=latexbold>(E)</span>a+1+a2a<span class='latex-bold'>(D) </span>\sqrt{a+1}+\sqrt{a^2-a}\qquad <span class='latex-bold'>(E) </span>\sqrt{a+1}+a^2-a