MathDB

2019 AMC 10

Part of AMC 10

Subcontests

(25)

Three Semicircle IQ Test

As shown in the figure, line segment AD\overline{AD} is trisected by points BB and CC so that AB=BC=CD=2.AB=BC=CD=2. Three semicircles of radius 1,1, \overarc{AEB},\overarc{BFC}, and \overarc{CGD}, have their diameters on AD,\overline{AD}, and are tangent to line EGEG at E,F,E,F, and G,G, respectively. A circle of radius 22 has its center on F.F. The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form abπc+d,\frac{a}{b}\cdot\pi-\sqrt{c}+d, where a,b,c,a,b,c, and dd are positive integers and aa and bb are relatively prime. What is a+b+c+da+b+c+d?
[asy] size(6cm); filldraw(circle((0,0),2), gray(0.7)); filldraw(arc((0,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((-2,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0)); dot((-3,-1)); label("AA",(-3,-1),S); dot((-2,0)); label("EE",(-2,0),NW); dot((-1,-1)); label("BB",(-1,-1),S); dot((0,0)); label("FF",(0,0),N); dot((1,-1)); label("CC",(1,-1), S); dot((2,0)); label("GG", (2,0),NE); dot((3,-1)); label("DD", (3,-1), S); [/asy] <spanclass=latexbold>(A)</span>13<spanclass=latexbold>(B)</span>14<spanclass=latexbold>(C)</span>15<spanclass=latexbold>(D)</span>16<spanclass=latexbold>(E)</span>17<span class='latex-bold'>(A) </span> 13 \qquad<span class='latex-bold'>(B) </span> 14 \qquad<span class='latex-bold'>(C) </span> 15 \qquad<span class='latex-bold'>(D) </span> 16\qquad<span class='latex-bold'>(E) </span> 17

Circles in circles

The figure below shows 1313 circles of radius 11 within a larger circle. All the intersections occur at points of tangency. What is the area of the region, shaded in the figure, inside the larger circle but outside all the circles of radius 1?1 ?
[asy]unitsize(20);filldraw(circle((0,0),2*sqrt(3)+1),rgb(0.5,0.5,0.5));filldraw(circle((-2,0),1),white);filldraw(circle((0,0),1),white);filldraw(circle((2,0),1),white);filldraw(circle((1,sqrt(3)),1),white);filldraw(circle((3,sqrt(3)),1),white);filldraw(circle((-1,sqrt(3)),1),white);filldraw(circle((-3,sqrt(3)),1),white);filldraw(circle((1,-1*sqrt(3)),1),white);filldraw(circle((3,-1*sqrt(3)),1),white);filldraw(circle((-1,-1*sqrt(3)),1),white);filldraw(circle((-3,-1*sqrt(3)),1),white);filldraw(circle((0,2*sqrt(3)),1),white);filldraw(circle((0,-2*sqrt(3)),1),white);[/asy]
<spanclass=latexbold>(A)</span>4π3<spanclass=latexbold>(B)</span>7π<spanclass=latexbold>(C)</span>π(33+2)<spanclass=latexbold>(D)</span>10π(31)<spanclass=latexbold>(E)</span>π(3+6)<span class='latex-bold'>(A) </span> 4 \pi \sqrt{3} \qquad<span class='latex-bold'>(B) </span> 7 \pi \qquad<span class='latex-bold'>(C) </span> \pi(3\sqrt{3} +2) \qquad<span class='latex-bold'>(D) </span> 10 \pi (\sqrt{3} - 1) \qquad<span class='latex-bold'>(E) </span> \pi(\sqrt{3} + 6)
9
2
8
2

Symmetry

The figure below shows line \ell with a regular, infinite, recurring pattern of squares and line segments.
[asy] size(300); defaultpen(linewidth(0.8)); real r = 0.35; path P = (0,0)--(0,1)--(1,1)--(1,0), Q = (1,1)--(1+r,1+r); path Pp = (0,0)--(0,-1)--(1,-1)--(1,0), Qp = (-1,-1)--(-1-r,-1-r); for(int i=0;i <= 4;i=i+1) { draw(shift((4*i,0)) * P); draw(shift((4*i,0)) * Q); } for(int i=1;i <= 4;i=i+1) { draw(shift((4*i-2,0)) * Pp); draw(shift((4*i-1,0)) * Qp); } draw((-1,0)--(18.5,0),Arrows(TeXHead)); [/asy] How many of the following four kinds of rigid motion transformations of the plane in which this figure is drawn, other than the identity transformation, will transform this figure into itself?
[*] some rotation around a point of line \ell [*] some translation in the direction parallel to line \ell [*] the reflection across line \ell [*] some reflection across a line perpendicular to line \ell
<spanclass=latexbold>(A)</span>0<spanclass=latexbold>(B)</span>1<spanclass=latexbold>(C)</span>2<spanclass=latexbold>(D)</span>3<spanclass=latexbold>(E)</span>4<span class='latex-bold'>(A) </span> 0 \qquad<span class='latex-bold'>(B) </span> 1 \qquad<span class='latex-bold'>(C) </span> 2 \qquad<span class='latex-bold'>(D) </span> 3 \qquad<span class='latex-bold'>(E) </span> 4

Equilaterals and quadrilaterals

The figure below shows a square and four equilateral triangles, with each triangle having a side lying on a side of the square, such that each triangle has side length 2 and the third vertices of the triangles meet at the center of the square. The region inside the square but outside the triangles is shaded. What is the area of the shaded region?
[asy] pen white = gray(1); pen gray = gray(0.5); draw((0,0)--(2sqrt(3),0)--(2sqrt(3),2sqrt(3))--(0,2sqrt(3))--cycle); fill((0,0)--(2sqrt(3),0)--(2sqrt(3),2sqrt(3))--(0,2sqrt(3))--cycle, gray); draw((sqrt(3)-1,0)--(sqrt(3),sqrt(3))--(sqrt(3)+1,0)--cycle); fill((sqrt(3)-1,0)--(sqrt(3),sqrt(3))--(sqrt(3)+1,0)--cycle, white); draw((sqrt(3)-1,2sqrt(3))--(sqrt(3),sqrt(3))--(sqrt(3)+1,2sqrt(3))--cycle); fill((sqrt(3)-1,2sqrt(3))--(sqrt(3),sqrt(3))--(sqrt(3)+1,2sqrt(3))--cycle, white); draw((0,sqrt(3)-1)--(sqrt(3),sqrt(3))--(0,sqrt(3)+1)--cycle); fill((0,sqrt(3)-1)--(sqrt(3),sqrt(3))--(0,sqrt(3)+1)--cycle, white); draw((2sqrt(3),sqrt(3)-1)--(sqrt(3),sqrt(3))--(2sqrt(3),sqrt(3)+1)--cycle); fill((2sqrt(3),sqrt(3)-1)--(sqrt(3),sqrt(3))--(2sqrt(3),sqrt(3)+1)--cycle, white); [/asy]
<spanclass=latexbold>(A)</span>4<spanclass=latexbold>(B)</span>1243<spanclass=latexbold>(C)</span>33<spanclass=latexbold>(D)</span>43<spanclass=latexbold>(E)</span>163<span class='latex-bold'>(A) </span> 4\qquad<span class='latex-bold'>(B) </span>12 - 4\sqrt{3} \qquad<span class='latex-bold'>(C) </span> 3\sqrt{3} \qquad <span class='latex-bold'>(D) </span>4\sqrt{3}\qquad <span class='latex-bold'>(E) </span>16 - \sqrt{3}
7
2

Raashan, Sylvia, and Ted and Chip Firing

Raashan, Sylvia, and Ted play the following game. Each starts with $1\$1. A bell rings every 1515 seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives $1\$1 to that player. What is the probability that after the bell has rung 20192019 times, each player will have $1\$1? (For example, Raashan and Ted may each decide to give $1\$1 to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have $0\$0, Sylvia would have $2\$2, and Ted would have $1\$1, and and that is the end of the first round of play. In the second round Raashan has no money to give, but Sylvia and Ted might choose each other to give their $1\$1 to, and and the holdings will be the same as the end of the second [sic] round.
<spanclass=latexbold>(A)</span>17<spanclass=latexbold>(B)</span>14<spanclass=latexbold>(C)</span>13<spanclass=latexbold>(D)</span>12<spanclass=latexbold>(E)</span>23<span class='latex-bold'>(A) </span> \frac{1}{7} \qquad<span class='latex-bold'>(B) </span> \frac{1}{4} \qquad<span class='latex-bold'>(C) </span> \frac{1}{3} \qquad<span class='latex-bold'>(D) </span> \frac{1}{2} \qquad<span class='latex-bold'>(E) </span> \frac{2}{3}
6
2
4
2
3
2
2
2
1
2