MathDB
Three Semicircle IQ Test

Source: 2019 AMC 12B #15 / 10B #20

February 14, 2019
2019 AMC 12BAMCAMC 12AMC 12 Brelatively prime2019 AMC 10B

Problem Statement

As shown in the figure, line segment AD\overline{AD} is trisected by points BB and CC so that AB=BC=CD=2.AB=BC=CD=2. Three semicircles of radius 1,1, \overarc{AEB},\overarc{BFC}, and \overarc{CGD}, have their diameters on AD,\overline{AD}, and are tangent to line EGEG at E,F,E,F, and G,G, respectively. A circle of radius 22 has its center on F.F. The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form abπc+d,\frac{a}{b}\cdot\pi-\sqrt{c}+d, where a,b,c,a,b,c, and dd are positive integers and aa and bb are relatively prime. What is a+b+c+da+b+c+d?
[asy] size(6cm); filldraw(circle((0,0),2), gray(0.7)); filldraw(arc((0,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((-2,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0)); dot((-3,-1)); label("AA",(-3,-1),S); dot((-2,0)); label("EE",(-2,0),NW); dot((-1,-1)); label("BB",(-1,-1),S); dot((0,0)); label("FF",(0,0),N); dot((1,-1)); label("CC",(1,-1), S); dot((2,0)); label("GG", (2,0),NE); dot((3,-1)); label("DD", (3,-1), S); [/asy] <spanclass=latexbold>(A)</span>13<spanclass=latexbold>(B)</span>14<spanclass=latexbold>(C)</span>15<spanclass=latexbold>(D)</span>16<spanclass=latexbold>(E)</span>17<span class='latex-bold'>(A) </span> 13 \qquad<span class='latex-bold'>(B) </span> 14 \qquad<span class='latex-bold'>(C) </span> 15 \qquad<span class='latex-bold'>(D) </span> 16\qquad<span class='latex-bold'>(E) </span> 17