MathDB
Triangles in Circles

Source: 2019 AMC 10A #13

February 8, 2019
AMCAMC 10AMC 10 A2019 AMC 10A2019 AMCgeometryTriangle

Problem Statement

Let ΔABC\Delta ABC be an isosceles triangle with BC=ACBC = AC and ACB=40\angle ACB = 40^{\circ}. Contruct the circle with diameter BC\overline{BC}, and let DD and EE be the other intersection points of the circle with the sides AC\overline{AC} and AB\overline{AB}, respectively. Let FF be the intersection of the diagonals of the quadrilateral BCDEBCDE. What is the degree measure of BFC?\angle BFC ?
<spanclass=latexbold>(A)</span>90<spanclass=latexbold>(B)</span>100<spanclass=latexbold>(C)</span>105<spanclass=latexbold>(D)</span>110<spanclass=latexbold>(E)</span>120<span class='latex-bold'>(A) </span> 90 \qquad<span class='latex-bold'>(B) </span> 100 \qquad<span class='latex-bold'>(C) </span> 105 \qquad<span class='latex-bold'>(D) </span> 110 \qquad<span class='latex-bold'>(E) </span> 120