MathDB

2006 AMC 10

Part of AMC 10

Subcontests

(25)

2006 AMC 10 #12

Rolly wishes to secure his dog with an 8-foot rope to a square shed that is 16 feet on each side. His preliminary drawings are shown. Which of these arrangements gives the dog the greater area to roam, and by how many square feet?
[asy]defaultpen(linewidth(0.7)); size(7cm); D((0,0)--(16,0)--(16,-16)--(0,-16)--cycle, black); D((16,-8)--(24,-8), black); label('Dog', (24, -8), SE); label('I', (8,-8), (0,0)); MP('8', (16,-4), W); MP('8', (16,-12),W); MP('8', (20,-8), N); label('Rope', (20,-8),S); D((0,-20)--(16,-20)--(16,-36)--(0,-36)--cycle, black); D((16,-24)--(24,-24), black); label("II", (8,-28), (0,0)); MP('4', (16,-22), W); MP('8', (20,-24), N); label("Dog",(24,-24),SE); label("Rope", (20,-24), S); dot((24,-24)^^(24,-8));[/asy]
<spanclass=latexbold>(A)</span> I, by 8π<spanclass=latexbold>(B)</span> I, by 6π<spanclass=latexbold>(C)</span> II, by 4π<spanclass=latexbold>(D)</span>II, by 8π<spanclass=latexbold>(E)</span> II, by 10π <span class='latex-bold'>(A)</span>\text{ I, by }8\pi\qquad<span class='latex-bold'>(B)</span>\text{ I, by }6\pi\qquad<span class='latex-bold'>(C)</span>\text{ II, by }4\pi\qquad<span class='latex-bold'>(D) </span>\text{II, by }8\pi\qquad<span class='latex-bold'>(E)</span>\text{ II, by }10\pi

2006 AMC 10 #24

Circles with centers O O and P P have radii 2 and 4, respectively, and are externally tangent. Points A A and B B are on the circle centered at O O, and points C C and D D are on the circle centered at P P, such that AD \overline{AD} and BC \overline{BC} are common external tangents to the circles. What is the area of hexagon AOBCPD AOBCPD? [asy] size(250);defaultpen(linewidth(0.8)); pair X=(-6,0), O=origin, P=(6,0), B=tangent(X, O, 2, 1), A=tangent(X, O, 2, 2), C=tangent(X, P, 4, 1), D=tangent(X, P, 4, 2); pair top=X+15*dir(X--A), bottom=X+15*dir(X--B); draw(Circle(O, 2)^^Circle(P, 4)); draw(bottom--X--top); draw(A--O--B^^O--P^^D--P--C); pair point=X; label("22", midpoint(O--A), dir(point--midpoint(O--A))); label("44", midpoint(P--D), dir(point--midpoint(P--D))); label("OO", O, SE); label("PP", P, dir(point--P)); pair point=O; label("AA", A, dir(point--A)); label("BB", B, dir(point--B)); pair point=P; label("CC", C, dir(point--C)); label("DD", D, dir(point--D)); fill((-3,7)--(-3,-7)--(-7,-7)--(-7,7)--cycle, white);[/asy]
<spanclass=latexbold>(A)</span>183<spanclass=latexbold>(B)</span>242<spanclass=latexbold>(C)</span>36<spanclass=latexbold>(D)</span>243<spanclass=latexbold>(E)</span>322 <span class='latex-bold'>(A) </span> 18\sqrt {3} \qquad <span class='latex-bold'>(B) </span> 24\sqrt {2} \qquad <span class='latex-bold'>(C) </span> 36 \qquad <span class='latex-bold'>(D) </span> 24\sqrt {3} \qquad <span class='latex-bold'>(E) </span> 32\sqrt {2}
8
2
6
2
3
2
4
2
5
2
9
2

Linked rings

A number of linked rings, each 1 cm thick, are hanging on a peg. The top ring has an outside diameter of 20 cm. The outside diameter of each of the outer rings is 1 cm less than that of the ring above it. The bottom ring has an outside diameter of 3 cm. What is the distance, in cm, from the top of the top ring to the bottom of the bottom ring? [asy] size(200); defaultpen(linewidth(3)); real[] inrad = {40,34,28,21}; real[] outrad = {55,49,37,30}; real[] center; path[][] quad = new path[4][4]; center[0] = 0; for(int i=0;i<=3;i=i+1) { if(i != 0) { center = center[i-1] - inrad[i-1] - inrad+3.5; } quad[0] = arc((0,center),inrad,0,90)--arc((0,center),outrad,90,0)--cycle; quad[1] = arc((0,center),inrad,90,180)--arc((0,center),outrad,180,90)--cycle; quad[2] = arc((0,center),inrad,180,270)--arc((0,center),outrad,270,180)--cycle; quad[3] = arc((0,center),inrad,270,360)--arc((0,center),outrad,360,270)--cycle; draw(circle((0,center),inrad)^^circle((0,center),outrad)); } void fillring(int i,int j) { if ((j % 2) == 0) { fill(quad[j],white); } else { filldraw(quad[j],black); } } for(int i=0;i<=3;i=i+1) { for(int j=0;j<=3;j=j+1) { fillring(((2-i) % 4),j); } } for(int k=0;k<=2;k=k+1) { filldraw(circle((0,-228 - 25 * k),3),black); } real r = 130, s = -90; draw((0,57)--(r,57)^^(0,-57)--(r,-57),linewidth(0.7)); draw((2*r/3,56)--(2*r/3,-56),linewidth(0.7),Arrows(size=3)); label("2020",(2*r/3,-10),E); draw((0,39)--(s,39)^^(0,-39)--(s,-39),linewidth(0.7)); draw((9*s/10,38)--(9*s/10,-38),linewidth(0.7),Arrows(size=3)); label("1818",(9*s/10,0),W); [/asy] <spanclass=latexbold>(A)</span>171<spanclass=latexbold>(B)</span>173<spanclass=latexbold>(C)</span>182<spanclass=latexbold>(D)</span>188<spanclass=latexbold>(E)</span>210 <span class='latex-bold'>(A) </span> 171\qquad <span class='latex-bold'>(B) </span> 173\qquad <span class='latex-bold'>(C) </span> 182\qquad <span class='latex-bold'>(D) </span> 188\qquad <span class='latex-bold'>(E) </span> 210