MathDB
Internal tangent of circles

Source: AMC 12 2006A, Problem 16

February 5, 2006
ratioAMCAMC 10AMC 12Pythagorean Theoremgeometry

Problem Statement

Circles with centers A A and B B have radii 3 and 8, respectively. A common internal tangent intersects the circles at C C and D D, respectively. Lines AB AB and CD CD intersect at E E, and AE \equal{} 5. What is CD CD? [asy]unitsize(2.5mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3;
pair A=(0,0), Ep=(5,0), B=(5+40/3,0); pair M=midpoint(A--Ep); pair C=intersectionpoints(Circle(M,2.5),Circle(A,3))[1]; pair D=B+8*dir(180+degrees(C));
dot(A); dot(C); dot(B); dot(D); draw(C--D); draw(A--B); draw(Circle(A,3)); draw(Circle(B,8));
label("AA",A,W); label("BB",B,E); label("CC",C,SE); label("EE",Ep,SSE); label("DD",D,NW);[/asy]<spanclass=latexbold>(A)</span>13<spanclass=latexbold>(B)</span>443<spanclass=latexbold>(C)</span>221<spanclass=latexbold>(D)</span>255<spanclass=latexbold>(E)</span>553 <span class='latex-bold'>(A) </span> 13\qquad <span class='latex-bold'>(B) </span> \frac {44}{3}\qquad <span class='latex-bold'>(C) </span> \sqrt {221}\qquad <span class='latex-bold'>(D) </span> \sqrt {255}\qquad <span class='latex-bold'>(E) </span> \frac {55}{3}