2006 AMC 10 #19
Source:
August 20, 2011
geometrytrigonometryPythagorean Theorem
Problem Statement
A circle of radius 2 is centered at . Square has side length 1. Sides and are extended past to meet the circle at and , respectively. What is the area of the shaded region in the figure, which is bounded by , , and the minor arc connecting and ?[asy]
defaultpen(linewidth(0.8));
pair O=origin, A=(1,0), C=(0,1), B=(1,1), D=(1, sqrt(3)), E=(sqrt(3), 1), point=B;
fill(Arc(O, 2, 0, 90)--O--cycle, mediumgray);
clip(B--Arc(O, 2, 30, 60)--cycle);
draw(Circle(origin, 2));
draw((-2,0)--(2,0)^^(0,-2)--(0,2));
draw(A--D^^C--E);
label("", A, dir(point--A));
label("", C, dir(point--C));
label("", O, dir(point--O));
label("", D, dir(point--D));
label("", E, dir(point--E));
label("", B, SW);[/asy] (A) \frac {\pi}3 \plus{} 1 \minus{} \sqrt {3} \qquad (B) \frac {\pi}2\left( 2 \minus{} \sqrt {3}\right) \qquad (C) \pi\left(2 \minus{} \sqrt {3}\right) \qquad (D) \frac {\pi}{6} \plus{} \frac {\sqrt {3} \minus{} 1}{2} \\
\qquad \indent (E) \frac {\pi}{3} \minus{} 1 \plus{} \sqrt {3}