MathDB
Linked rings

Source: AMC 12 2006A, Problem 12

February 5, 2006
AMC

Problem Statement

A number of linked rings, each 1 cm thick, are hanging on a peg. The top ring has an outside diameter of 20 cm. The outside diameter of each of the outer rings is 1 cm less than that of the ring above it. The bottom ring has an outside diameter of 3 cm. What is the distance, in cm, from the top of the top ring to the bottom of the bottom ring? [asy] size(200); defaultpen(linewidth(3)); real[] inrad = {40,34,28,21}; real[] outrad = {55,49,37,30}; real[] center; path[][] quad = new path[4][4]; center[0] = 0; for(int i=0;i<=3;i=i+1) { if(i != 0) { center = center[i-1] - inrad[i-1] - inrad+3.5; } quad[0] = arc((0,center),inrad,0,90)--arc((0,center),outrad,90,0)--cycle; quad[1] = arc((0,center),inrad,90,180)--arc((0,center),outrad,180,90)--cycle; quad[2] = arc((0,center),inrad,180,270)--arc((0,center),outrad,270,180)--cycle; quad[3] = arc((0,center),inrad,270,360)--arc((0,center),outrad,360,270)--cycle; draw(circle((0,center),inrad)^^circle((0,center),outrad)); } void fillring(int i,int j) { if ((j % 2) == 0) { fill(quad[j],white); } else { filldraw(quad[j],black); } } for(int i=0;i<=3;i=i+1) { for(int j=0;j<=3;j=j+1) { fillring(((2-i) % 4),j); } } for(int k=0;k<=2;k=k+1) { filldraw(circle((0,-228 - 25 * k),3),black); } real r = 130, s = -90; draw((0,57)--(r,57)^^(0,-57)--(r,-57),linewidth(0.7)); draw((2*r/3,56)--(2*r/3,-56),linewidth(0.7),Arrows(size=3)); label("2020",(2*r/3,-10),E); draw((0,39)--(s,39)^^(0,-39)--(s,-39),linewidth(0.7)); draw((9*s/10,38)--(9*s/10,-38),linewidth(0.7),Arrows(size=3)); label("1818",(9*s/10,0),W); [/asy] <spanclass=latexbold>(A)</span>171<spanclass=latexbold>(B)</span>173<spanclass=latexbold>(C)</span>182<spanclass=latexbold>(D)</span>188<spanclass=latexbold>(E)</span>210 <span class='latex-bold'>(A) </span> 171\qquad <span class='latex-bold'>(B) </span> 173\qquad <span class='latex-bold'>(C) </span> 182\qquad <span class='latex-bold'>(D) </span> 188\qquad <span class='latex-bold'>(E) </span> 210