MathDB

2005 AMC 10

Part of AMC 10

Subcontests

(25)
6
2
5
2
4
2
9
2
1
2

Rotating a Square

Three one-inch squares are palced with their bases on a line. The center square is lifted out and rotated 45 45^\circ, as shown. Then it is centered and lowered into its original location until it touches both of the adjoining squares. How many inches is the point B B from the line on which the bases of the original squares were placed? [asy]unitsize(1inch); defaultpen(linewidth(.8pt)+fontsize(8pt));
draw((0,0)--((1/3) + 3*(1/2),0)); fill(((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6) + 1,(1/2))--((1/6) + 1,0)--cycle, rgb(.7,.7,.7)); draw(((1/6),0)--((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6),(1/2))--cycle); draw(((1/6) + (1/2),0)--((1/6) + (1/2),(1/2))--((1/6) + 1,(1/2))--((1/6) + 1,0)--cycle); draw(((1/6) + 1,0)--((1/6) + 1,(1/2))--((1/6) + (3/2),(1/2))--((1/6) + (3/2),0)--cycle);
draw((2,0)--(2 + (1/3) + (3/2),0)); draw(((2/3) + (3/2),0)--((2/3) + 2,0)--((2/3) + 2,(1/2))--((2/3) + (3/2),(1/2))--cycle); draw(((2/3) + (5/2),0)--((2/3) + (5/2),(1/2))--((2/3) + 3,(1/2))--((2/3) + 3,0)--cycle);
label("BB",((1/6) + (1/2),(1/2)),NW); label("BB",((2/3) + 2 + (1/4),(29/30)),NNE);
draw(((1/6) + (1/2),(1/2)+0.05)..(1,.8)..((2/3) + 2 + (1/4)-.05,(29/30)),EndArrow(HookHead,3));
fill(((2/3) + 2 + (1/4),(1/4))--((2/3) + (5/2) + (1/10),(1/2) + (1/9))--((2/3) + 2 + (1/4),(29/30))--((2/3) + 2 - (1/10),(1/2) + (1/9))--cycle, rgb(.7,.7,.7)); draw(((2/3) + 2 + (1/4),(1/4))--((2/3) + (5/2) + (1/10),(1/2) + (1/9))--((2/3) + 2 + (1/4),(29/30))--((2/3) + 2 - (1/10),(1/2) + (1/9))--cycle);[/asy] (A)\ 1\qquad (B)\ \sqrt {2}\qquad (C)\ \frac {3}{2}\qquad (D)\ \sqrt {2} \plus{} \frac {1}{2}\qquad (E)\ 2

Triangle's area ratio

Let AB \overline{AB} be a diameter of a circle and C C be a point on AB \overline{AB} with 2 \cdot AC \equal{} BC. Let D D and E E be points on the circle such that DCAB \overline{DC} \perp \overline{AB} and DE \overline{DE} is a second diameter. What is the ratio of the area of DCE \triangle DCE to the area of ABD \triangle ABD? [asy]unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3;
pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); pair D=dir(aCos(C.x)), E=(-D.x,-D.y);
draw(A--B--D--cycle); draw(D--E--C); draw(unitcircle,white); drawline(D,C); dot(O);
clip(unitcircle); draw(unitcircle); label("EE",E,SSE); label("BB",B,E); label("AA",A,W); label("DD",D,NNW); label("CC",C,SW);
draw(rightanglemark(D,C,B,2));[/asy]<spanclass=latexbold>(A)</span> 16<spanclass=latexbold>(B)</span> 14<spanclass=latexbold>(C)</span> 13<spanclass=latexbold>(D)</span> 12<spanclass=latexbold>(E)</span> 23 <span class='latex-bold'>(A)</span> \ \frac {1}{6} \qquad <span class='latex-bold'>(B)</span> \ \frac {1}{4} \qquad <span class='latex-bold'>(C)</span>\ \frac {1}{3} \qquad <span class='latex-bold'>(D)</span>\ \frac {1}{2} \qquad <span class='latex-bold'>(E)</span>\ \frac {2}{3}
8
2
7
2