MathDB

12

Part of 2005 AMC 10

Problems(2)

Trefoil

Source:

1/14/2009
The figure shown is called a trefoil and is constructed by drawing circular sectors about sides of the congruent equilateral triangles. What is the area of a trefoil whose horizontal base has length 2 2? [asy]unitsize(1.5cm); defaultpen(linewidth(.8pt)+fontsize(12pt));
pair O=(0,0), A=dir(0), B=dir(60), C=dir(120), D=dir(180); pair E=B+C;
draw(D--E--B--O--C--B--A,linetype("4 4")); draw(Arc(O,1,0,60),linewidth(1.2pt)); draw(Arc(O,1,120,180),linewidth(1.2pt)); draw(Arc(C,1,0,60),linewidth(1.2pt)); draw(Arc(B,1,120,180),linewidth(1.2pt)); draw(A--D,linewidth(1.2pt)); draw(O--dir(40),EndArrow(HookHead,4)); draw(O--dir(140),EndArrow(HookHead,4)); draw(C--C+dir(40),EndArrow(HookHead,4)); draw(B--B+dir(140),EndArrow(HookHead,4));
label("2",O,S); draw((0.1,-0.12)--(1,-0.12),EndArrow(HookHead,4),EndBar); draw((-0.1,-0.12)--(-1,-0.12),EndArrow(HookHead,4),EndBar);[/asy] (A)\ \frac13\pi\plus{}\frac{\sqrt3}{2} \qquad (B)\ \frac23\pi \qquad (C)\ \frac23\pi\plus{}\frac{\sqrt3}{4} \qquad (D)\ \frac23\pi\plus{}\frac{\sqrt3}{3} \qquad (E)\ \frac23\pi\plus{}\frac{\sqrt3}{2}
geometry
Probability of Product Being Prime

Source:

1/14/2009
Twelve fair dice are rolled. What is the probability that the product of the numbers on the top faces is prime? <spanclass=latexbold>(A)</span> (112)12<spanclass=latexbold>(B)</span> (16)12<spanclass=latexbold>(C)</span> 2(16)11<spanclass=latexbold>(D)</span> 52(16)11<spanclass=latexbold>(E)</span> (16)10 <span class='latex-bold'>(A)</span>\ \left(\frac{1}{12}\right)^{12}\qquad <span class='latex-bold'>(B)</span>\ \left(\frac{1}{6}\right)^{12}\qquad <span class='latex-bold'>(C)</span>\ 2\left(\frac{1}{6}\right)^{11}\qquad <span class='latex-bold'>(D)</span>\ \frac{5}{2}\left(\frac{1}{6}\right)^{11}\qquad <span class='latex-bold'>(E)</span>\ \left(\frac{1}{6}\right)^{10}
probability