MathDB

23

Part of 2005 AMC 10

Problems(2)

Triangle's area ratio

Source:

11/14/2005
Let AB \overline{AB} be a diameter of a circle and C C be a point on AB \overline{AB} with 2 \cdot AC \equal{} BC. Let D D and E E be points on the circle such that DCAB \overline{DC} \perp \overline{AB} and DE \overline{DE} is a second diameter. What is the ratio of the area of DCE \triangle DCE to the area of ABD \triangle ABD? [asy]unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3;
pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); pair D=dir(aCos(C.x)), E=(-D.x,-D.y);
draw(A--B--D--cycle); draw(D--E--C); draw(unitcircle,white); drawline(D,C); dot(O);
clip(unitcircle); draw(unitcircle); label("EE",E,SSE); label("BB",B,E); label("AA",A,W); label("DD",D,NNW); label("CC",C,SW);
draw(rightanglemark(D,C,B,2));[/asy]<spanclass=latexbold>(A)</span> 16<spanclass=latexbold>(B)</span> 14<spanclass=latexbold>(C)</span> 13<spanclass=latexbold>(D)</span> 12<spanclass=latexbold>(E)</span> 23 <span class='latex-bold'>(A)</span> \ \frac {1}{6} \qquad <span class='latex-bold'>(B)</span> \ \frac {1}{4} \qquad <span class='latex-bold'>(C)</span>\ \frac {1}{3} \qquad <span class='latex-bold'>(D)</span>\ \frac {1}{2} \qquad <span class='latex-bold'>(E)</span>\ \frac {2}{3}
geometryratiosimilar triangles
Ratios of Areas Within a Trapezoid

Source:

1/15/2009
In trapezoid ABCD ABCD we have AB \overline{AB} parallel to DC \overline{DC}, E E as the midpoint of BC \overline{BC}, and F F as the midpoint of DA \overline{DA}. The area of ABEF ABEF is twice the area of FECD FECD. What is AB/DC AB/DC? <spanclass=latexbold>(A)</span> 2<spanclass=latexbold>(B)</span> 3<spanclass=latexbold>(C)</span> 5<spanclass=latexbold>(D)</span> 6<spanclass=latexbold>(E)</span> 8 <span class='latex-bold'>(A)</span>\ 2\qquad <span class='latex-bold'>(B)</span>\ 3\qquad <span class='latex-bold'>(C)</span>\ 5\qquad <span class='latex-bold'>(D)</span>\ 6\qquad <span class='latex-bold'>(E)</span>\ 8
ratiogeometrytrapezoidrectangle