Let AB be a diameter of a circle and C be a point on AB with 2 \cdot AC \equal{} BC. Let D and E be points on the circle such that DC⊥AB and DE is a second diameter. What is the ratio of the area of △DCE to the area of △ABD?
[asy]unitsize(2.5cm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
dotfactor=3;pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0);
pair D=dir(aCos(C.x)), E=(-D.x,-D.y);draw(A--B--D--cycle);
draw(D--E--C);
draw(unitcircle,white);
drawline(D,C);
dot(O);clip(unitcircle);
draw(unitcircle);
label("E",E,SSE);
label("B",B,E);
label("A",A,W);
label("D",D,NNW);
label("C",C,SW);draw(rightanglemark(D,C,B,2));[/asy]<spanclass=′latex−bold′>(A)</span>61<spanclass=′latex−bold′>(B)</span>41<spanclass=′latex−bold′>(C)</span>31<spanclass=′latex−bold′>(D)</span>21<spanclass=′latex−bold′>(E)</span>32