MathDB

Problems(4)

Just geometry

Source: Romanian District Olympiad 2024 9.4

3/10/2024
Let HH{} be the orthocenter of the triangle ABCABC{} and XX{} be the midpoint of the side BC.BC. The perpendicular at HH{} to HXHX{} intersects the sides (AB)(AB) and (AC)(AC) at YY{} and ZZ{} respectively. Let OO{} be the circumcenter of ABCABC{} and OO' be the circumcenter of BHC.BHC. [*]Prove that HY=HZ.HY=HZ. [*]Prove that AY+AZ=2OO.\overrightarrow{AY}+\overrightarrow{AZ}=2\overrightarrow{OO'}.
geometryvector
injectivity in 0

Source: Romanian District Olympiad, grade 10, p4

3/10/2024
Let nN{0}n\in\mathbb{N}\setminus\left\{0\right\} be a positive integer. Find all the functions f:RRf:\mathbb{R}\rightarrow \mathbb{R} satisfying that : f(x+y2n)=f(f(x))+y2n1f(y),()x,yR,f(x+y^{2n})=f(f(x))+y^{2n-1}f(y),(\forall)x,y\in\mathbb{R}, and f(x)=0f(x)=0 has an unique solution.
algebrafunctional equation
Yet another convergence problem

Source: Romanian District Olympiad 2024 11.4

3/10/2024
Consider the functions f,g:RRf,g:\mathbb{R}\to\mathbb{R} such that ff{} is continous. For any real numbers a<b<ca<b<c there exists a sequence (xn)n1(x_n)_{n\geqslant 1} which converges to bb{} and for which the limit of g(xn)g(x_n) as nn{} tends to infinity exists and satisfies f(a)<limng(xn)<f(c).f(a)<\lim_{n\to\infty}g(x_n)<f(c). [*]Give an example of a pair of such functions f,gf,g for which gg{} is discontinous at every point. [*]Prove that if gg{} is monotonous, then f=g.f=g.
real analysislimit
Cute integral inequality

Source: Romanian District Olympiad 2024 12.4

3/10/2024
Let f:[0,)Rf:[0,\infty)\to\mathbb{R} be a differentiable function, with a continous derivative. Given that f(0)=0f(0)=0 and 0f(x)10\leqslant f'(x)\leqslant 1 for every x>0x>0 prove that1n+10af(t)2n+1dt(0af(t)ndt)2,\frac{1}{n+1}\int_0^af(t)^{2n+1}\mathrm{d}t\leqslant\left(\int_0^af(t)^n\mathrm{d}t\right)^2,for any positive integer nn{} and real number a>0.a>0.
Integralinequalitiesreal analysis