MathDB
Just geometry

Source: Romanian District Olympiad 2024 9.4

March 10, 2024
geometryvector

Problem Statement

Let HH{} be the orthocenter of the triangle ABCABC{} and XX{} be the midpoint of the side BC.BC. The perpendicular at HH{} to HXHX{} intersects the sides (AB)(AB) and (AC)(AC) at YY{} and ZZ{} respectively. Let OO{} be the circumcenter of ABCABC{} and OO' be the circumcenter of BHC.BHC. [*]Prove that HY=HZ.HY=HZ. [*]Prove that AY+AZ=2OO.\overrightarrow{AY}+\overrightarrow{AZ}=2\overrightarrow{OO'}.