MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2024 District Olympiad
P4
Cute integral inequality
Cute integral inequality
Source: Romanian District Olympiad 2024 12.4
March 10, 2024
Integral
inequalities
real analysis
Problem Statement
Let
f
:
[
0
,
∞
)
→
R
f:[0,\infty)\to\mathbb{R}
f
:
[
0
,
∞
)
→
R
be a differentiable function, with a continous derivative. Given that
f
(
0
)
=
0
f(0)=0
f
(
0
)
=
0
and
0
⩽
f
′
(
x
)
⩽
1
0\leqslant f'(x)\leqslant 1
0
⩽
f
′
(
x
)
⩽
1
for every
x
>
0
x>0
x
>
0
prove that
1
n
+
1
∫
0
a
f
(
t
)
2
n
+
1
d
t
⩽
(
∫
0
a
f
(
t
)
n
d
t
)
2
,
\frac{1}{n+1}\int_0^af(t)^{2n+1}\mathrm{d}t\leqslant\left(\int_0^af(t)^n\mathrm{d}t\right)^2,
n
+
1
1
∫
0
a
f
(
t
)
2
n
+
1
d
t
⩽
(
∫
0
a
f
(
t
)
n
d
t
)
2
,
for any positive integer
n
n{}
n
and real number
a
>
0.
a>0.
a
>
0.
Back to Problems
View on AoPS