MathDB

Problems(6)

AP x BH = BQ x AH, bisector, altitude, projections related

Source: 2011 Belarus TST 1.2

6/14/2020
Points LL and HH are marked on the sides ABAB of an acute-angled triangle ABC so that CLCL is a bisector and CHCH is an altitude. Let P,QP,Q be the feet of the perpendiculars from LL to ACAC and BCBC respectively. Prove that APBH=BQAHAP \cdot BH = BQ \cdot AH.
I. Gorodnin
geometryangle bisectoraltituderatio
<ACX=<BCY if AX x BX / CX^2 = AY x BY / CY^2

Source: 2011 Belarus TST 2.2

6/14/2020
Two different points X,YX,Y are marked on the side ABAB of a triangle ABCABC so that AXBXCX2=AYBYCY2\frac{AX \cdot BX}{CX^2}=\frac{AY \cdot BY}{CY^2} . Prove that ACX=BCY\angle ACX=\angle BCY.
I.Zhuk
equal anglesgeometry
AB^2+DC^2=AC^2+BD^2, orthocenter, ext.angle bisector, circumcircle related

Source: 2011 Belarus TST 3.2

6/14/2020
The external angle bisector of the angle AA of an acute-angled triangle ABCABC meets the circumcircle of ABC\vartriangle ABC at point TT. The perpendicular from the orthocenter HH of ABC\vartriangle ABC to the line TATA meets the line BCBC at point PP. The line TPTP meets the circumcircce of ABC\vartriangle ABC at point DD. Prove that AB2+DC2=AC2+BD2AB^2+DC^2=AC^2+BD^2
A. Voidelevich
geometrycircumcircleangle bisectororthocenter
m^2 +25 \vdots (2011^x-1007^y) where m,x,y in N

Source: 2011 Belarus TST 6.2

11/7/2020
Do they exist natural numbers m,x,ym,x,y such that m2+25(2011x1007y)?m^2 +25 \vdots (2011^x-1007^y) ? S. Finskii
number theorydividesdivisible
modified version of IMO 2010 SL G3 max { X_iX_{i+1}/P_iP_{i+1}) >=1

Source: 2011 Belarus TST 8.2

11/8/2020
Let A1A2AnA_1A_2 \ldots A_n be a convex polygon. Point PP inside this polygon is chosen so that its projections P1,,PnP_1, \ldots , P_n onto lines A1A2,,AnA1A_1A_2, \ldots , A_nA_1 respectively lie on the sides of the polygon. Prove that for points X1,,XnX_1, \ldots , X_n on sides A1A2,,AnA1A_1A_2, \ldots , A_nA_1 respectively, max{X1X2P1P2,,XnX1PnP1}1.\max \left\{ \frac{X_1X_2}{P_1P_2}, \ldots, \frac{X_nX_1}{P_nP_1} \right\} \geq 1. if a) X1,,XnX_1, \ldots , X_n are the midpoints of the corressponding sides, b) X1,,XnX_1, \ldots , X_n are the feet of the corressponding altitudes, c) X1,,XnX_1, \ldots , X_n are arbitrary points on the corressponding lines.
Modified version of [url=https://artofproblemsolving.com/community/c6h418634p2361975]IMO 2010 SL G3 (it was question c)
geometrygeometric inequality
sum a^3 bc/(b+c) >= 1/6 (sum ab)^2 if sum a/(b+c)=1+1/6 (sum a/c) for a,b,c>0

Source: 2011 Belarus TST 5.2

11/7/2020
Positive real a,b,ca,b,c satisfy the condition ab+c+ba+c+ca+b=1+16(ac+ba+cb)\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1+\frac{1}{6}\left( \frac{a}{c}+\frac{b}{a}+\frac{c}{b} \right) Prove that a3bcb+c+b3caa+c+c3aba+b16(ab+bc+ca)2\frac{a^3bc}{b+c}+\frac{b^3ca}{a+c}+\frac{c^3ab}{a+b}\ge \frac{1}{6}(ab+bc+ca)^2 I.Voronovich
algebrainequalities