MathDB
AB^2+DC^2=AC^2+BD^2, orthocenter, ext.angle bisector, circumcircle related

Source: 2011 Belarus TST 3.2

June 14, 2020
geometrycircumcircleangle bisectororthocenter

Problem Statement

The external angle bisector of the angle AA of an acute-angled triangle ABCABC meets the circumcircle of ABC\vartriangle ABC at point TT. The perpendicular from the orthocenter HH of ABC\vartriangle ABC to the line TATA meets the line BCBC at point PP. The line TPTP meets the circumcircce of ABC\vartriangle ABC at point DD. Prove that AB2+DC2=AC2+BD2AB^2+DC^2=AC^2+BD^2
A. Voidelevich