MathDB
sum a^3 bc/(b+c) >= 1/6 (sum ab)^2 if sum a/(b+c)=1+1/6 (sum a/c) for a,b,c>0

Source: 2011 Belarus TST 5.2

November 7, 2020
algebrainequalities

Problem Statement

Positive real a,b,ca,b,c satisfy the condition ab+c+ba+c+ca+b=1+16(ac+ba+cb)\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1+\frac{1}{6}\left( \frac{a}{c}+\frac{b}{a}+\frac{c}{b} \right) Prove that a3bcb+c+b3caa+c+c3aba+b16(ab+bc+ca)2\frac{a^3bc}{b+c}+\frac{b^3ca}{a+c}+\frac{c^3ab}{a+b}\ge \frac{1}{6}(ab+bc+ca)^2 I.Voronovich