Subcontests
(9)Σ|x_n-y_n| \leq 2- min {x_i/y_i} - min {y_i/x_i}, if Σx_i=Σy_i=1
Let n a positive integer and let x1,…,xn,y1,…,yn real positive numbers such that x1+…+xn=y1+…+yn=1. Prove that:∣x1−y1∣+…+∣xn−yn∣≤2−1≤i≤nminyixi−1≤i≤nminxiyi 1/x(ay+b)+1/y(az+b)+1/z(ax+b)>=3 if xyz=1, real and positive, under conditions
Let x,y,z be positive real numbers such that xyz=1. Prove the inequality:x(ay+b)1+y(az+b)1+z(ax+b)1≥3
if:
(A) a=0,b=1
(B) a=1,b=0
(C) a+b=1,a,b>0
When the equality holds? 2014 JBMO Shortlist G5
Let ABC be a triangle with AB=BC; and let BD be the internal bisector of ∠ABC, , (D∈AC). Denote by M the midpoint of the arc AC which contains point B. The circumscribed circle of the triangle △BDM intersects the segment AB at point K=B. Let J be the reflection of A with respect to K. If DJ∩AM={O}, prove that the points J,B,M,O belong to the same circle.