MathDB
Σ|x_n-y_n| \leq 2- min {x_i/y_i} - min {y_i/x_i}, if Σx_i=Σy_i=1

Source: JBMO Shortlist 2014 A9

April 24, 2019
algebraminimuminequalitiespositive real

Problem Statement

Let nn a positive integer and let x1,,xn,y1,,ynx_1, \ldots, x_n, y_1, \ldots, y_n real positive numbers such that x1++xn=y1++yn=1x_1+\ldots+x_n=y_1+\ldots+y_n=1. Prove that:
x1y1++xnyn2min1in  xiyimin1in  yixi|x_1-y_1|+\ldots+|x_n-y_n|\leq 2-\underset{1\leq i\leq n}{min} \;\dfrac{x_i}{y_i}-\underset{1\leq i\leq n}{min} \;\dfrac{y_i}{x_i}