MathDB
a^2 + b^2 + c^2 + a^2b^2 + b^2c^2 + c^2a^2 \geq 15/16 if 8abc=1

Source: JBMO Shortlist 2014 A2

April 24, 2019
algebrainequalitiespositive realthree variable inequality

Problem Statement

Let a,b,ca, b, c be positive real numbers such that abc=18abc = \dfrac {1} {8}. Prove the inequality:a2+b2+c2+a2b2+b2c2+c2a21516a ^ 2 + b ^ 2 + c ^ 2 + a ^ 2b ^ 2 + b ^ 2c ^ 2 + c ^ 2a ^ 2 \geq \dfrac {15} {16} When the equality holds?