MathDB
Problems
Contests
International Contests
JBMO ShortLists
2014 JBMO Shortlist
9
9
Part of
2014 JBMO Shortlist
Problems
(1)
Σ|x_n-y_n| \leq 2- min {x_i/y_i} - min {y_i/x_i}, if Σx_i=Σy_i=1
Source: JBMO Shortlist 2014 A9
4/24/2019
Let
n
n
n
a positive integer and let
x
1
,
…
,
x
n
,
y
1
,
…
,
y
n
x_1, \ldots, x_n, y_1, \ldots, y_n
x
1
,
…
,
x
n
,
y
1
,
…
,
y
n
real positive numbers such that
x
1
+
…
+
x
n
=
y
1
+
…
+
y
n
=
1
x_1+\ldots+x_n=y_1+\ldots+y_n=1
x
1
+
…
+
x
n
=
y
1
+
…
+
y
n
=
1
. Prove that:
∣
x
1
−
y
1
∣
+
…
+
∣
x
n
−
y
n
∣
≤
2
−
m
i
n
1
≤
i
≤
n
x
i
y
i
−
m
i
n
1
≤
i
≤
n
y
i
x
i
|x_1-y_1|+\ldots+|x_n-y_n|\leq 2-\underset{1\leq i\leq n}{min} \;\dfrac{x_i}{y_i}-\underset{1\leq i\leq n}{min} \;\dfrac{y_i}{x_i}
∣
x
1
−
y
1
∣
+
…
+
∣
x
n
−
y
n
∣
≤
2
−
1
≤
i
≤
n
min
y
i
x
i
−
1
≤
i
≤
n
min
x
i
y
i
algebra
minimum
inequalities
positive real