Problems(2)
Suppose that the differentiable functions a,b,f,g:R→R satisfy
f(x)≥0,f′(x)≥0,g(x)≥0,g′(x)≥0 for all x∈R,
x→∞lima(x)=A≥0,x→∞limb(x)=B≥0,x→∞limf(x)=x→∞limg(x)=∞,
and
g′(x)f′(x)+a(x)g(x)f(x)=b(x).
Prove that limx→∞g(x)f(x)=A+1B.
functionreal analysis
For each positive integer n, let fn(ϑ)=sin(ϑ)⋅sin(2ϑ)⋅sin(4ϑ)⋯sin(2nϑ).
For each real ϑ and all n, prove that
∣fn(ϑ)∣≤32∣fn(3π)∣ inequalitiesderivative