MathDB
IMC 2001 Problem 6

Source: IMC 2001 Day 1 Problem 6

October 30, 2020
functionreal analysis

Problem Statement

Suppose that the differentiable functions a,b,f,g:RRa, b, f, g:\mathbb{R} \rightarrow \mathbb{R} satisfy f(x)0,f(x)0,g(x)0,g(x)0 for all xR, f(x)\geq 0, f'(x) \geq 0,g(x)\geq 0, g'(x) \geq 0 \text{ for all } x \in \mathbb{R}, limxa(x)=A0,limxb(x)=B0,limxf(x)=limxg(x)=,\lim_{x\rightarrow \infty} a(x)=A\geq 0,\lim_{x\rightarrow \infty} b(x)=B\geq 0, \lim_{x\rightarrow \infty} f(x)=\lim_{x\rightarrow \infty} g(x)=\infty, and f(x)g(x)+a(x)f(x)g(x)=b(x).\frac{f'(x)}{g'(x)}+a(x)\frac{f(x)}{g(x)}=b(x). Prove that limxf(x)g(x)=BA+1\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\frac{B}{A+1}.