MathDB
IMC 2001 Problem 12

Source: IMC 2001 Day 2 Problem 6

October 30, 2020
inequalitiesderivative

Problem Statement

For each positive integer nn, let fn(ϑ)=sin(ϑ)sin(2ϑ)sin(4ϑ)sin(2nϑ)f_{n}(\vartheta)=\sin(\vartheta)\cdot \sin(2\vartheta) \cdot \sin(4\vartheta)\cdots \sin(2^{n}\vartheta). For each real ϑ\vartheta and all nn, prove that fn(ϑ)23fn(π3)|f_{n}(\vartheta)| \leq \frac{2}{\sqrt{3}}|f_{n}(\frac{\pi}{3})|