MathDB

Problems(2)

2012-2013 Winter OMO #30

Source:

1/16/2013
Pairwise distinct points P1,P2,,P16P_1,P_2,\ldots, P_{16} lie on the perimeter of a square with side length 44 centered at OO such that PiPi+1=1\lvert P_iP_{i+1} \rvert = 1 for i=1,2,,16i=1,2,\ldots, 16. (We take P17P_{17} to be the point P1P_1.) We construct points Q1,Q2,,Q16Q_1,Q_2,\ldots,Q_{16} as follows: for each ii, a fair coin is flipped. If it lands heads, we define QiQ_i to be PiP_i; otherwise, we define QiQ_i to be the reflection of PiP_i over OO. (So, it is possible for some of the QiQ_i to coincide.) Let DD be the length of the vector OQ1+OQ2++OQ16\overrightarrow{OQ_1} + \overrightarrow{OQ_2} + \cdots + \overrightarrow{OQ_{16}}. Compute the expected value of D2D^2.
Ray Li
Online Math Opengeometryperimetergeometric transformationreflectionvectoranalytic geometry
2013-2014 Fall OMO #30

Source:

10/30/2013
Let P(t)=t3+27t2+199t+432P(t) = t^3+27t^2+199t+432. Suppose aa, bb, cc, and xx are distinct positive reals such that P(a)=P(b)=P(c)=0P(-a)=P(-b)=P(-c)=0, and a+b+cx=b+c+xa+c+a+xb+a+b+xc. \sqrt{\frac{a+b+c}{x}} = \sqrt{\frac{b+c+x}{a}} + \sqrt{\frac{c+a+x}{b}} + \sqrt{\frac{a+b+x}{c}}. If x=mnx=\frac{m}{n} for relatively prime positive integers mm and nn, compute m+nm+n.
Proposed by Evan Chen
Online Math Opengeometryalgebrapolynomialnumber theoryrelatively primearea of a triangle