MathDB
2013-2014 Fall OMO #30

Source:

October 30, 2013
Online Math Opengeometryalgebrapolynomialnumber theoryrelatively primearea of a triangle

Problem Statement

Let P(t)=t3+27t2+199t+432P(t) = t^3+27t^2+199t+432. Suppose aa, bb, cc, and xx are distinct positive reals such that P(a)=P(b)=P(c)=0P(-a)=P(-b)=P(-c)=0, and a+b+cx=b+c+xa+c+a+xb+a+b+xc. \sqrt{\frac{a+b+c}{x}} = \sqrt{\frac{b+c+x}{a}} + \sqrt{\frac{c+a+x}{b}} + \sqrt{\frac{a+b+x}{c}}. If x=mnx=\frac{m}{n} for relatively prime positive integers mm and nn, compute m+nm+n.
Proposed by Evan Chen