MathDB
2012-2013 Winter OMO #30

Source:

January 16, 2013
Online Math Opengeometryperimetergeometric transformationreflectionvectoranalytic geometry

Problem Statement

Pairwise distinct points P1,P2,,P16P_1,P_2,\ldots, P_{16} lie on the perimeter of a square with side length 44 centered at OO such that PiPi+1=1\lvert P_iP_{i+1} \rvert = 1 for i=1,2,,16i=1,2,\ldots, 16. (We take P17P_{17} to be the point P1P_1.) We construct points Q1,Q2,,Q16Q_1,Q_2,\ldots,Q_{16} as follows: for each ii, a fair coin is flipped. If it lands heads, we define QiQ_i to be PiP_i; otherwise, we define QiQ_i to be the reflection of PiP_i over OO. (So, it is possible for some of the QiQ_i to coincide.) Let DD be the length of the vector OQ1+OQ2++OQ16\overrightarrow{OQ_1} + \overrightarrow{OQ_2} + \cdots + \overrightarrow{OQ_{16}}. Compute the expected value of D2D^2.
Ray Li