MathDB

2010 F = Ma

Part of F = Ma

Subcontests

(26)

2010 F = Ma Exam Problem 25

Spaceman Fred's spaceship (which has negligible mass) is in an elliptical orbit about Planet Bob. The minimum distance between the spaceship and the planet is RR; the maximum distance between the spaceship and the planet is 2R2R. At the point of maximum distance, Spaceman Fred is traveling at speed v0v_\text{0}. He then fires his thrusters so that he enters a circular orbit of radius 2R2R. What is his new speed? [asy] size(300); // Shape draw(circle((0,0),25),dashed+gray); draw(circle((0,0),3.5),linewidth(2)); draw(ellipse((5,0),20,15)); // Dashed Lines draw((25,13)--(25,-35),dotted); draw((0,-35)--(0,-3.3),dotted); draw((0,3.3)--(0,13),dotted); draw((-15,13)--(-15,-35),dotted); // Labels draw((-14,-35)--(-1,-35),Arrows(size=6,SimpleHead)); label(scale(1.2)*"RR",(-7.5,-35),N); draw((24,-35)--(1,-35),Arrows(size=6,SimpleHead)); label(scale(1.2)*"2R2R",(10,-35),N); // Blobs on Earth path A=(-1.433, 2.667)-- (-1.433, 2.573)-- (-1.360, 2.478)-- (-1.408, 2.360)-- (-1.493, 2.207)-- (-1.554, 2.160)-- (-1.614, 2.113)-- (-1.675, 2.065)-- (-1.735, 1.959)-- (-1.772, 1.877)-- (-1.723, 1.759)-- (-1.748, 1.676)-- (-1.748, 1.523)-- (-1.772, 1.369)-- (-1.760, 1.240)-- (-1.857, 1.145)-- (-1.941, 1.098)-- (-2.050, 1.122)-- (-2.111, 1.086)-- (-2.244, 1.039)-- (-2.390, 1.004)-- (-2.511, 0.909)-- (-2.486, 0.697)-- (-2.499, 0.555)-- (-2.535, 0.414)-- (-2.668, 0.308)-- (-2.765, 0.237)-- (-2.910, 0.131)-- (-3.068, 0.036)-- (-3.250, 0.024)-- (-3.310, 0.154)-- (-3.274, 0.272)-- (-3.286, 0.402)-- (-3.298, 0.532)-- (-3.250, 0.650)-- (-3.165, 0.768)-- (-3.128, 0.933)-- (-3.068, 1.074)-- (-3.032, 1.204)-- (-2.971, 1.310)-- (-2.886, 1.452)-- (-2.801, 1.558)-- (-2.729, 1.652)-- (-2.656, 1.770)-- (-2.583, 1.912)-- (-2.486, 1.995)-- (-2.365, 2.089)-- (-2.244, 2.207)-- (-2.123, 2.313)-- (-2.014, 2.419)-- (-1.905, 2.478)-- (-1.832, 2.573)-- (-1.687, 2.643)-- (-1.578, 2.714)--cycle; filldraw(A,gray); path B=(-0.397, 2.527)-- (-0.468, 2.321)-- (-0.538, 2.154)-- (-0.639, 2.065)-- (-0.760, 2.085)-- (-0.922, 2.085)-- (-0.993, 2.016)-- (-0.770, 1.918)-- (-0.649, 1.829)-- (-0.498, 1.780)-- (-0.367, 1.770)-- (-0.205, 1.751)-- (-0.084, 1.761)-- (-0.104, 1.613)-- (-0.114, 1.495)-- (-0.094, 1.358)-- (0.007, 1.220)-- (0.067, 1.131)-- (0.108, 1.013)-- (0.188, 0.905)-- (0.239, 0.787)-- (0.330, 0.650)-- (0.461, 0.620)-- (0.622, 0.620)-- (0.794, 0.591)-- (0.905, 0.610)-- (0.956, 0.689)-- (1.026, 0.591)-- (1.097, 0.483)-- (1.198, 0.374)-- (1.258, 0.276)-- (1.339, 0.188)-- (1.319, -0.009)-- (1.309, -0.166)-- (1.198, -0.343)-- (1.077, -0.432)-- (0.935, -0.520)-- (0.814, -0.589)-- (0.633, -0.677)-- (0.481, -0.727)-- (0.350, -0.776)-- (0.229, -0.894)-- (0.229, -1.041)-- (0.229, -1.228)-- (0.340, -1.346)-- (0.522, -1.415)-- (0.643, -1.513)-- (0.693, -1.651)-- (0.784, -1.798)-- (0.723, -1.936)-- (0.612, -2.044)-- (0.471, -2.123)-- (0.350, -2.201)-- (0.249, -2.270)-- (0.108, -2.339)-- (-0.013, -2.418)-- (-0.124, -2.535)-- (-0.135, -2.673)-- (-0.175, -2.811)-- (-0.084, -2.840)-- (0.067, -2.840)-- (0.209, -2.830)-- (0.350, -2.742)-- (0.522, -2.653)-- (0.582, -2.604)-- (0.713, -2.545)-- (0.845, -2.457)-- (0.935, -2.408)-- (1.057, -2.388)-- (1.228, -2.280)-- (1.329, -2.191)-- (1.460, -2.132)-- (1.581, -2.093)-- (1.692, -2.044)-- (1.793, -2.005)-- (1.844, -1.906)-- (1.844, -1.828)-- (1.904, -1.749)-- (2.005, -1.621)-- (1.955, -1.454)-- (1.894, -1.287)-- (1.773, -1.189)-- (1.632, -0.992)-- (1.592, -0.874)-- (1.491, -0.736)-- (1.410, -0.569)-- (1.460, -0.412)-- (1.561, -0.274)-- (1.592, -0.078)-- (1.622, 0.168)-- (1.551, 0.306)-- (1.440, 0.404)-- (1.420, 0.561)-- (1.551, 0.620)-- (1.703, 0.630)-- (1.824, 0.532)-- (1.955, 0.365)-- (2.046, 0.453)-- (2.116, 0.551)-- (2.167, 0.689)-- (2.096, 0.807)-- (1.965, 0.905)-- (1.834, 0.935)-- (1.743, 0.994)-- (1.622, 1.131)-- (1.531, 1.249)-- (1.430, 1.348)-- (1.359, 1.515)-- (1.420, 1.702)-- (1.511, 1.839)-- (1.571, 2.016)-- (1.672, 2.134)-- (1.592, 2.232)-- (1.440, 2.291)-- (1.289, 2.350)-- (1.178, 2.252)-- (1.127, 2.134)-- (1.067, 1.997)-- (0.986, 1.898)-- (0.845, 1.839)-- (0.693, 1.839)-- (0.522, 1.859)-- (0.471, 1.977)-- (0.380, 2.124)-- (0.289, 2.203)-- (0.188, 2.291)-- (0.047, 2.311)-- (-0.074, 2.370)-- (-0.195, 2.508)--cycle; filldraw(B,gray); [/asy] (A) 3/2v0\sqrt{3/2}v_\text{0} (B) 5v0\sqrt{5}v_\text{0} (C) 3/5v0\sqrt{3/5}v_\text{0} (D) 2v0\sqrt{2}v_\text{0} (E) 2v02v_\text{0}

2010 F = Ma Exam Problem 24

A uniform circular disk of radius RR begins with a mass MM; about an axis through the center of the disk and perpendicular to the plane of the disk the moment of inertia is I0=12MR2I_\text{0}=\frac{1}{2}MR^2. A hole is cut in the disk as shown in the diagram. In terms of the radius RR and the mass MM of the original disk, what is the moment of inertia of the resulting object about the axis shown?
[asy] size(14cm); pair O=origin; pair A=O, B=(3,0), C=(6,0);
real r_1=1, r_2=.5;
pen my_fill_pen_1=gray(.8); pen my_fill_pen_2=white; pen my_fill_pen_3=gray(.7); pen my_circleline_draw_pen=black+1.5bp;
//fill();
filldraw(circle(A,r_1),my_fill_pen_1,my_circleline_draw_pen); filldraw(circle(B,r_1),my_fill_pen_1,my_circleline_draw_pen);
// Ellipse filldraw(yscale(.2)*circle(C,r_1),my_fill_pen_1,my_circleline_draw_pen);
draw((C.x,C.y-.75)--(C.x,C.y-.2), dashed); draw(C--(C.x,C.y+1),dashed); label("axis of rotation",(C.x,C.y-.75),3*S);
// small ellipse pair center_small_ellipse; center_small_ellipse=midpoint(C--(C.x+r_1,C.y)); //dot(center_small_ellipse); filldraw(yscale(.15)*circle(center_small_ellipse,r_1/2),white);
pair center_elliptic_arc_arrow; real gr=(sqrt(5)-1)/2; center_elliptic_arc_arrow=(C.x,C.y+gr); //dot(center_elliptic_arc_arrow);
draw(//shift((0*center_elliptic_arc_arrow.x,center_elliptic_arc_arrow.y-.2))* ( yscale(.2)* ( arc((center_elliptic_arc_arrow.x,center_elliptic_arc_arrow.y+2.4), .4,120,360+60)) ),Arrow); //dot(center_elliptic_arc_arrow);
// lower_Half-Ellipse real downshift=1;
pair C_prime=(C.x,C.y-downshift); path lower_Half_Ellipse=yscale(.2)*arc(C_prime,r_1,180,360); path upper_Half_Ellipse=yscale(.2)*arc(C,r_1,180,360); draw(lower_Half_Ellipse,my_circleline_draw_pen); //draw(upper_Half_Ellipse,red);

// Why here ".2*downshift" instead of downshift seems to be not absolutely clean. filldraw(upper_Half_Ellipse--(C.x+r_1,C.y-.2*downshift)--reverse(lower_Half_Ellipse)--cycle,gray);
//filldraw(shift(C-.1)*(circle((B+.5),.5)),my_fill_pen_2);// filldraw(circle((B+.5),.5),my_fill_pen_2);//shift(C-.1)*
/* filldraw(//shift((C.x,C.y-.45))* yscale(.2)*circle((C.x,C.y-1),r_1),my_fill_pen_3,my_circleline_draw_pen); */
draw("RR",A--dir(240),Arrow); draw("RR",B--shift(B)*dir(240),Arrow);
draw(scale(1)*"R/2\scriptstyle R/2",(B+.5)--(B+1),.5*LeftSide,Arrow); draw(scale(1)*"R/2\scriptstyle R/2",(B+.5)--(B+1),.5*LeftSide,Arrow);
[/asy] (A) (15/32)MR2\text{(15/32)}MR^2 (B) (13/32)MR2\text{(13/32)}MR^2 (C) (3/8)MR2\text{(3/8)}MR^2 (D) (9/32)MR2\text{(9/32)}MR^2 (E) (15/16)MR2\text{(15/16)}MR^2

2010 F = Ma Exam Problem 20

Consider the following graph of position vs. time, which represents the motion of a certain particle in the given potential. [asy] import roundedpath; size(300); picture pic; // Rectangle draw(pic,(0,0)--(20,0)--(20,15)--(0,15)--cycle); label(pic,"0",(0,0),S); label(pic,"2",(4,0),S); label(pic,"4",(8,0),S); label(pic,"6",(12,0),S); label(pic,"8",(16,0),S); label(pic,"10",(20,0),S); label(pic,"-15",(0,2),W); label(pic,"-10",(0,4),W); label(pic,"-5",(0,6),W); label(pic,"0",(0,8),W); label(pic,"5",(0,10),W); label(pic,"10",(0,12),W); label(pic,"15",(0,14),W); label(pic,rotate(90)*"x (m)",(-2,7),W); label(pic,"t (s)",(11,-2),S); // Tick Marks draw(pic,(4,0)--(4,0.3)); draw(pic,(8,0)--(8,0.3)); draw(pic,(12,0)--(12,0.3)); draw(pic,(16,0)--(16,0.3)); draw(pic,(20,0)--(20,0.3)); draw(pic,(4,15)--(4,14.7)); draw(pic,(8,15)--(8,14.7)); draw(pic,(12,15)--(12,14.7)); draw(pic,(16,15)--(16,14.7)); draw(pic,(20,15)--(20,14.7)); draw(pic,(0,2)--(0.3,2)); draw(pic,(0,4)--(0.3,4)); draw(pic,(0,6)--(0.3,6)); draw(pic,(0,8)--(0.3,8)); draw(pic,(0,10)--(0.3,10)); draw(pic,(0,12)--(0.3,12)); draw(pic,(0,14)--(0.3,14)); draw(pic,(20,2)--(19.7,2)); draw(pic,(20,4)--(19.7,4)); draw(pic,(20,6)--(19.7,6)); draw(pic,(20,8)--(19.7,8)); draw(pic,(20,10)--(19.7,10)); draw(pic,(20,12)--(19.7,12)); draw(pic,(20,14)--(19.7,14)); // Path add(pic); path A=(0.102, 6.163)-- (0.192, 6.358)-- (0.369, 6.500)-- (0.526, 6.642)-- (0.643, 6.712)-- (0.820, 6.830)-- (0.938, 6.901)-- (1.075, 7.043)-- (1.193, 7.185)-- (1.369, 7.256)-- (1.506, 7.374)-- (1.644, 7.445)-- (1.840, 7.515)-- (1.958, 7.586)-- (2.134, 7.657)-- (2.291, 7.752)-- (2.468, 7.846)-- (2.625, 7.846)-- (2.899, 7.893)-- (3.095, 8.035)-- (3.350, 8.035)-- (3.586, 8.106)-- (3.860, 8.106)-- (4.135, 8.106)-- (4.371, 8.035)-- (4.606, 8.035)-- (4.881, 8.012)-- (5.155, 7.917)-- (5.391, 7.823)-- (5.665, 7.728)-- (5.960, 7.563)-- (6.175, 7.468)-- (6.332, 7.374)-- (6.528, 7.232)-- (6.725, 7.161)-- (6.882, 6.996)-- (7.117, 6.854)-- (7.333, 6.712)-- (7.509, 6.523)-- (7.666, 6.358)-- (7.902, 6.146)-- (8.098, 5.980)-- (8.274, 5.791)-- (8.451, 5.649)-- (8.647, 5.484)-- (8.882, 5.248)-- (9.196, 5.059)-- (9.392, 4.894)-- (9.628, 4.752)-- (9.824, 4.634)-- (10.118, 4.516)-- (10.452, 4.350)-- (10.785, 4.232)-- (11.001, 4.185)-- (11.315, 4.138)-- (11.648, 4.114)-- (12.002, 4.114)-- (12.257, 4.091)-- (12.610, 4.067)-- (12.825, 4.161)-- (13.081, 4.185)-- (13.316, 4.279)-- (13.492, 4.327)-- (13.689, 4.445)-- (13.826, 4.516)-- (14.022, 4.587)-- (14.159, 4.705)-- (14.316, 4.823)-- (14.532, 4.964)-- (14.669, 5.059)-- (14.866, 5.177)-- (15.062, 5.248)-- (15.278, 5.461)-- (15.474, 5.697)-- (15.650, 5.838)-- (15.847, 6.004)-- (16.043, 6.169)-- (16.258, 6.334)-- (16.415, 6.523)-- (16.592, 6.736)-- (16.788, 6.830)-- (17.063, 7.067)-- (17.357, 7.232)-- (17.573, 7.397)-- (17.808, 7.515)-- (18.063, 7.634)-- (18.358, 7.704)-- (18.573, 7.870)-- (18.887, 7.941)-- (19.142, 8.012)-- (19.358, 8.035)-- (19.574, 8.082)-- (19.770, 8.130); draw(shift(1.8*up)*roundedpath(A,0.09),linewidth(1.5)); [/asy] What is the total energy of the particle?
(A) -5 J\text{-5 J} (B) 0 J\text{0 J} (C) 5 J\text{5 J} (D) 10 J\text{10 J} (E) 15 J\text{15 J}

2010 F = Ma Exam Problem 19

Consider the following graphs of position vs. time. [asy] size(500); picture pic; // Rectangle draw(pic,(0,0)--(20,0)--(20,15)--(0,15)--cycle); label(pic,"0",(0,0),S); label(pic,"2",(4,0),S); label(pic,"4",(8,0),S); label(pic,"6",(12,0),S); label(pic,"8",(16,0),S); label(pic,"10",(20,0),S); label(pic,"-15",(0,2),W); label(pic,"-10",(0,4),W); label(pic,"-5",(0,6),W); label(pic,"0",(0,8),W); label(pic,"5",(0,10),W); label(pic,"10",(0,12),W); label(pic,"15",(0,14),W); label(pic,rotate(90)*"x (m)",(-2,7),W); label(pic,"t (s)",(11,-2),S); // Tick Marks draw(pic,(4,0)--(4,0.3)); draw(pic,(8,0)--(8,0.3)); draw(pic,(12,0)--(12,0.3)); draw(pic,(16,0)--(16,0.3)); draw(pic,(20,0)--(20,0.3)); draw(pic,(4,15)--(4,14.7)); draw(pic,(8,15)--(8,14.7)); draw(pic,(12,15)--(12,14.7)); draw(pic,(16,15)--(16,14.7)); draw(pic,(20,15)--(20,14.7)); draw(pic,(0,2)--(0.3,2)); draw(pic,(0,4)--(0.3,4)); draw(pic,(0,6)--(0.3,6)); draw(pic,(0,8)--(0.3,8)); draw(pic,(0,10)--(0.3,10)); draw(pic,(0,12)--(0.3,12)); draw(pic,(0,14)--(0.3,14)); draw(pic,(20,2)--(19.7,2)); draw(pic,(20,4)--(19.7,4)); draw(pic,(20,6)--(19.7,6)); draw(pic,(20,8)--(19.7,8)); draw(pic,(20,10)--(19.7,10)); draw(pic,(20,12)--(19.7,12)); draw(pic,(20,14)--(19.7,14)); // Path add(pic); path A=(0,14)--(20,14); draw(A); label("I.",(8,-4),3*S); path B=(0,6)--(20,6); picture pic2=shift(30*right)*pic; draw(shift(30*right)*B); label("II.",(38,-4),3*S); add(pic2); path C=(0,12)--(20,14); picture pic3=shift(60*right)*pic; draw(shift(60*right)*C); label("III.",(68,-4),3*S); add(pic3); [/asy] Which of the graphs could be the motion of a particle in the given potential?
(A) I\text{I} (B) III\text{III} (C) I and II\text{I and II} (D) I and III\text{I and III} (E) I, II, and III\text{I, II, and III}

2010 F = Ma Exam Problem 18

Which of the following represents the force corresponding to the given potential? [asy] // Code by riben size(400); picture pic; // Rectangle draw(pic,(0,0)--(22,0)--(22,12)--(0,12)--cycle); label(pic,"-15",(2,0),S); label(pic,"-10",(5,0),S); label(pic,"-5",(8,0),S); label(pic,"0",(11,0),S); label(pic,"5",(14,0),S); label(pic,"10",(17,0),S); label(pic,"15",(20,0),S); label(pic,"-2",(0,2),W); label(pic,"-1",(0,4),W); label(pic,"0",(0,6),W); label(pic,"1",(0,8),W); label(pic,"2",(0,10),W); label(pic,rotate(90)*"F (N)",(-2,6),W); label(pic,"x (m)",(11,-2),S); // Tick Marks draw(pic,(2,0)--(2,0.3)); draw(pic,(5,0)--(5,0.3)); draw(pic,(8,0)--(8,0.3)); draw(pic,(11,0)--(11,0.3)); draw(pic,(14,0)--(14,0.3)); draw(pic,(17,0)--(17,0.3)); draw(pic,(20,0)--(20,0.3)); draw(pic,(0,2)--(0.3,2)); draw(pic,(0,4)--(0.3,4)); draw(pic,(0,6)--(0.3,6)); draw(pic,(0,8)--(0.3,8)); draw(pic,(0,10)--(0.3,10)); draw(pic,(2,12)--(2,11.7)); draw(pic,(5,12)--(5,11.7)); draw(pic,(8,12)--(8,11.7)); draw(pic,(11,12)--(11,11.7)); draw(pic,(14,12)--(14,11.7)); draw(pic,(17,12)--(17,11.7)); draw(pic,(20,12)--(20,11.7)); draw(pic,(22,2)--(21.7,2)); draw(pic,(22,4)--(21.7,4)); draw(pic,(22,6)--(21.7,6)); draw(pic,(22,8)--(21.7,8)); draw(pic,(22,10)--(21.7,10)); // Paths path A=(0,6)--(5,6)--(5,4)--(11,4)--(11,8)--(17,8)--(17,6)--(22,6); path B=(0,6)--(5,6)--(5,2)--(11,2)--(11,10)--(17,10)--(17,6)--(22,6); path C=(0,6)--(5,6)--(5,5)--(11,5)--(11,7)--(17,7)--(17,6)--(22,6); path D=(0,6)--(5,6)--(5,7)--(11,7)--(11,5)--(17,5)--(17,6)--(22,6); path E=(0,6)--(5,6)--(5,8)--(11,8)--(11,4)--(17,4)--(17,6)--(22,6); draw(A); label("(A)",(9.5,-3),4*S); draw(shift(35*right)*B); label("(B)",(45.5,-3),4*S); draw(shift(20*down)*C); label("(C)",(9.5,-23),4*S); draw(shift(35*right)*shift(20*down)*D); label("(D)",(45.5,-23),4*S); draw(shift(40*down)*E); label("(E)",(9.5,-43),4*S); add(pic); picture pic2=shift(35*right)*pic; picture pic3=shift(20*down)*pic; picture pic4=shift(35*right)*shift(20*down)*pic; picture pic5=shift(40*down)*pic; add(pic2); add(pic3); add(pic4); add(pic5); [/asy]
3