MathDB

2016 BAMO

Part of BAMO Contests

Subcontests

(5)
4
2

Medial hexagon by perpendiculars

In an acute triangle ABCABC let K,L,K,L, and MM be the midpoints of sides AB,BC,AB,BC, and CA,CA, respectively. From each of K,L,K,L, and MM drop two perpendiculars to the other two sides of the triangle; e.g., drop perpendiculars from KK to sides BCBC and CA,CA, etc. The resulting 66 perpendiculars intersect at points Q,S,Q,S, and TT as in the figure to form a hexagon KQLSMTKQLSMT inside triangle ABC.ABC. Prove that the area of this hexagon KQLSMTKQLSMT is half of the area of the original triangle ABC.ABC.
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra; diagram by adihaya*/ import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 11.888712276357234, xmax = 17.841346447833423, ymin = 10.61620970860601, ymax = 15.470685507068502; /* image dimensions */ pen zzttqq = rgb(0.6,0.2,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.); pair A = (12.488234161849352,12.833838721895551), B = (16.50823416184936,15.093838721895553), C = (16.28823416184936,11.353838721895551), K = (14.498234161849355,13.963838721895552), L = (16.39823416184936,13.223838721895552), M = (14.388234161849356,12.093838721895551), D = (13.615830174638527,13.467760858438725), F = (15.75135711740064,11.562938202365055), G = (15.625830174638523,14.597760858438724), H = (16.435061748056253,13.849907687412797), T = (14.02296781802369,12.74356027153236), Q = (16.032967818023693,13.873560271532357), O = (16.325061748056253,11.979907687412794);
draw(A--B--C--cycle, zzttqq); draw((13.426050287639166,13.361068683160477)--(13.532742462917415,13.171288796161116)--(13.722522349916774,13.277980971439364)--D--cycle, qqwuqq); draw((14.054227993863618,12.223925334689998)--(14.133240861538676,12.426796211152979)--(13.930369985075695,12.505809078828037)--(13.851357117400637,12.302938202365056)--cycle, qqwuqq); draw((16.337846386707046,12.19724654447628)--(16.12050752964356,12.210031183127075)--(16.107722890992765,11.992692326063588)--O--cycle, qqwuqq); draw((15.830369985075697,11.765809078828037)--(15.627499108612716,11.844821946503092)--(15.54848624093766,11.641951070040111)--F--cycle, qqwuqq); draw((15.436050287639164,14.491068683160476)--(15.542742462917412,14.301288796161115)--(15.73252234991677,14.407980971439365)--G--cycle, qqwuqq); draw((16.217722890992764,13.86269232606359)--(16.20493825234197,13.645353469000101)--(16.42227710940546,13.63256883034931)--H--cycle, qqwuqq); Label laxis; laxis.p = fontsize(10); xaxis(xmin, xmax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true); yaxis(ymin, ymax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */ /* draw figures */ draw(A--B, zzttqq); draw(B--C, zzttqq); draw(C--A, zzttqq); draw(M--D); draw(K--(13.851357117400637,12.302938202365056)); draw(F--L); draw(L--G); draw(K--H); draw(M--O); /* dots and labels */ dot(A,dotstyle); label("AA", (12.52502834296331,12.93568440300881), NE * labelscalefactor); dot(B,dotstyle); label("BB", (16.548187989892043,15.193580123223922), NE * labelscalefactor); dot(C,dotstyle); label("CC", (16.332661580235147,11.457789022504372), NE * labelscalefactor); dot(K,linewidth(3.pt) + dotstyle); label("KK", (14.536608166427676,14.02357961365791), NE * labelscalefactor); dot(L,linewidth(3.pt) + dotstyle); label("LL", (16.43529320388129,13.28463192340569), NE * labelscalefactor); dot(M,linewidth(3.pt) + dotstyle); label("MM", (14.433976542781535,12.155684063298134), NE * labelscalefactor); dot(D,linewidth(3.pt) + dotstyle); dot((13.851357117400637,12.302938202365056),linewidth(3.pt) + dotstyle); dot(F,linewidth(3.pt) + dotstyle); dot(G,linewidth(3.pt) + dotstyle); dot(H,linewidth(3.pt) + dotstyle); dot((15.922967818023695,12.003560271532354),linewidth(3.pt) + dotstyle); label("SS", (15.96318773510904,12.063315602016607), NE * labelscalefactor); dot(T,linewidth(3.pt) + dotstyle); label("TT", (14.064502697655428,12.802263292268826), NE * labelscalefactor); dot(Q,linewidth(3.pt) + dotstyle); label("QQ", (16.076082521119794,13.931211152376383), NE * labelscalefactor); dot(O,linewidth(3.pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy]