Subcontests
(5)Medial hexagon by perpendiculars
In an acute triangle ABC let K,L, and M be the midpoints of sides AB,BC, and CA, respectively. From each of K,L, and M drop two perpendiculars to the other two sides of the triangle; e.g., drop perpendiculars from K to sides BC and CA, etc. The resulting 6 perpendiculars intersect at points Q,S, and T as in the figure to form a hexagon KQLSMT inside triangle ABC. Prove that the area of this hexagon KQLSMT is half of the area of the original triangle ABC.[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra; diagram by adihaya*/
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 11.888712276357234, xmax = 17.841346447833423, ymin = 10.61620970860601, ymax = 15.470685507068502; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.);
pair A = (12.488234161849352,12.833838721895551), B = (16.50823416184936,15.093838721895553), C = (16.28823416184936,11.353838721895551), K = (14.498234161849355,13.963838721895552), L = (16.39823416184936,13.223838721895552), M = (14.388234161849356,12.093838721895551), D = (13.615830174638527,13.467760858438725), F = (15.75135711740064,11.562938202365055), G = (15.625830174638523,14.597760858438724), H = (16.435061748056253,13.849907687412797), T = (14.02296781802369,12.74356027153236), Q = (16.032967818023693,13.873560271532357), O = (16.325061748056253,11.979907687412794); draw(A--B--C--cycle, zzttqq);
draw((13.426050287639166,13.361068683160477)--(13.532742462917415,13.171288796161116)--(13.722522349916774,13.277980971439364)--D--cycle, qqwuqq);
draw((14.054227993863618,12.223925334689998)--(14.133240861538676,12.426796211152979)--(13.930369985075695,12.505809078828037)--(13.851357117400637,12.302938202365056)--cycle, qqwuqq);
draw((16.337846386707046,12.19724654447628)--(16.12050752964356,12.210031183127075)--(16.107722890992765,11.992692326063588)--O--cycle, qqwuqq);
draw((15.830369985075697,11.765809078828037)--(15.627499108612716,11.844821946503092)--(15.54848624093766,11.641951070040111)--F--cycle, qqwuqq);
draw((15.436050287639164,14.491068683160476)--(15.542742462917412,14.301288796161115)--(15.73252234991677,14.407980971439365)--G--cycle, qqwuqq);
draw((16.217722890992764,13.86269232606359)--(16.20493825234197,13.645353469000101)--(16.42227710940546,13.63256883034931)--H--cycle, qqwuqq);
Label laxis; laxis.p = fontsize(10);
xaxis(xmin, xmax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true);
yaxis(ymin, ymax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */
/* draw figures */
draw(A--B, zzttqq);
draw(B--C, zzttqq);
draw(C--A, zzttqq);
draw(M--D);
draw(K--(13.851357117400637,12.302938202365056));
draw(F--L);
draw(L--G);
draw(K--H);
draw(M--O);
/* dots and labels */
dot(A,dotstyle);
label("A", (12.52502834296331,12.93568440300881), NE * labelscalefactor);
dot(B,dotstyle);
label("B", (16.548187989892043,15.193580123223922), NE * labelscalefactor);
dot(C,dotstyle);
label("C", (16.332661580235147,11.457789022504372), NE * labelscalefactor);
dot(K,linewidth(3.pt) + dotstyle);
label("K", (14.536608166427676,14.02357961365791), NE * labelscalefactor);
dot(L,linewidth(3.pt) + dotstyle);
label("L", (16.43529320388129,13.28463192340569), NE * labelscalefactor);
dot(M,linewidth(3.pt) + dotstyle);
label("M", (14.433976542781535,12.155684063298134), NE * labelscalefactor);
dot(D,linewidth(3.pt) + dotstyle);
dot((13.851357117400637,12.302938202365056),linewidth(3.pt) + dotstyle);
dot(F,linewidth(3.pt) + dotstyle);
dot(G,linewidth(3.pt) + dotstyle);
dot(H,linewidth(3.pt) + dotstyle);
dot((15.922967818023695,12.003560271532354),linewidth(3.pt) + dotstyle);
label("S", (15.96318773510904,12.063315602016607), NE * labelscalefactor);
dot(T,linewidth(3.pt) + dotstyle);
label("T", (14.064502697655428,12.802263292268826), NE * labelscalefactor);
dot(Q,linewidth(3.pt) + dotstyle);
label("Q", (16.076082521119794,13.931211152376383), NE * labelscalefactor);
dot(O,linewidth(3.pt) + dotstyle);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy] Another year-based olympiad problem
Find a positive integer N and a1,a2,⋯,aN where ak=1 or ak=−1, for each k=1,2,⋯,N, such that a1⋅13+a2⋅23+a3⋅33⋯+aN⋅N3=20162016
or show that this is impossible. Tiling a rectangle with squares
The diagram below is an example of a <spanclass=′latex−italic′>rectangletiledbysquares</span>:
http://i.imgur.com/XCPQJgk.png
Each square has been labeled with its side length. The squares fill the rectangle without overlapping. In a similar way, a rectangle can be tiled by nine squares whose side lengths are 2,5,7,9,16,25,28,33, and 36. Sketch one such possible arrangement of those squares. They must fill the rectangle without overlapping. Label each square in your sketch by its side length as in the picture above.