Medial hexagon by perpendiculars
Source: 2016 BAMO-8 #4, 2016 BAMO-12 #2
February 24, 2016
B8geometryhexagonperpendicular
Problem Statement
In an acute triangle let and be the midpoints of sides and respectively. From each of and drop two perpendiculars to the other two sides of the triangle; e.g., drop perpendiculars from to sides and etc. The resulting perpendiculars intersect at points and as in the figure to form a hexagon inside triangle Prove that the area of this hexagon is half of the area of the original triangle [asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra; diagram by adihaya*/
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 11.888712276357234, xmax = 17.841346447833423, ymin = 10.61620970860601, ymax = 15.470685507068502; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.);
pair A = (12.488234161849352,12.833838721895551), B = (16.50823416184936,15.093838721895553), C = (16.28823416184936,11.353838721895551), K = (14.498234161849355,13.963838721895552), L = (16.39823416184936,13.223838721895552), M = (14.388234161849356,12.093838721895551), D = (13.615830174638527,13.467760858438725), F = (15.75135711740064,11.562938202365055), G = (15.625830174638523,14.597760858438724), H = (16.435061748056253,13.849907687412797), T = (14.02296781802369,12.74356027153236), Q = (16.032967818023693,13.873560271532357), O = (16.325061748056253,11.979907687412794); draw(A--B--C--cycle, zzttqq);
draw((13.426050287639166,13.361068683160477)--(13.532742462917415,13.171288796161116)--(13.722522349916774,13.277980971439364)--D--cycle, qqwuqq);
draw((14.054227993863618,12.223925334689998)--(14.133240861538676,12.426796211152979)--(13.930369985075695,12.505809078828037)--(13.851357117400637,12.302938202365056)--cycle, qqwuqq);
draw((16.337846386707046,12.19724654447628)--(16.12050752964356,12.210031183127075)--(16.107722890992765,11.992692326063588)--O--cycle, qqwuqq);
draw((15.830369985075697,11.765809078828037)--(15.627499108612716,11.844821946503092)--(15.54848624093766,11.641951070040111)--F--cycle, qqwuqq);
draw((15.436050287639164,14.491068683160476)--(15.542742462917412,14.301288796161115)--(15.73252234991677,14.407980971439365)--G--cycle, qqwuqq);
draw((16.217722890992764,13.86269232606359)--(16.20493825234197,13.645353469000101)--(16.42227710940546,13.63256883034931)--H--cycle, qqwuqq);
Label laxis; laxis.p = fontsize(10);
xaxis(xmin, xmax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true);
yaxis(ymin, ymax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */
/* draw figures */
draw(A--B, zzttqq);
draw(B--C, zzttqq);
draw(C--A, zzttqq);
draw(M--D);
draw(K--(13.851357117400637,12.302938202365056));
draw(F--L);
draw(L--G);
draw(K--H);
draw(M--O);
/* dots and labels */
dot(A,dotstyle);
label("", (12.52502834296331,12.93568440300881), NE * labelscalefactor);
dot(B,dotstyle);
label("", (16.548187989892043,15.193580123223922), NE * labelscalefactor);
dot(C,dotstyle);
label("", (16.332661580235147,11.457789022504372), NE * labelscalefactor);
dot(K,linewidth(3.pt) + dotstyle);
label("", (14.536608166427676,14.02357961365791), NE * labelscalefactor);
dot(L,linewidth(3.pt) + dotstyle);
label("", (16.43529320388129,13.28463192340569), NE * labelscalefactor);
dot(M,linewidth(3.pt) + dotstyle);
label("", (14.433976542781535,12.155684063298134), NE * labelscalefactor);
dot(D,linewidth(3.pt) + dotstyle);
dot((13.851357117400637,12.302938202365056),linewidth(3.pt) + dotstyle);
dot(F,linewidth(3.pt) + dotstyle);
dot(G,linewidth(3.pt) + dotstyle);
dot(H,linewidth(3.pt) + dotstyle);
dot((15.922967818023695,12.003560271532354),linewidth(3.pt) + dotstyle);
label("", (15.96318773510904,12.063315602016607), NE * labelscalefactor);
dot(T,linewidth(3.pt) + dotstyle);
label("", (14.064502697655428,12.802263292268826), NE * labelscalefactor);
dot(Q,linewidth(3.pt) + dotstyle);
label("", (16.076082521119794,13.931211152376383), NE * labelscalefactor);
dot(O,linewidth(3.pt) + dotstyle);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]