MathDB

2024 AMC 8 -

Part of AMC 8

Subcontests

(25)
3
1

Complementary Counting

Four squares of side length 4,7,9,4, 7, 9, and 1010 are arranged in increasing size order so that their left edges and bottom edges align. The squares alternate in color white-gray-white-gray, respectively, as shown in the figure. What is the area of the visible gray region in square units? [asy] size(150); filldraw((0,0)--(10,0)--(10,10)--(0,10)--cycle,gray(0.7),linewidth(1)); filldraw((0,0)--(9,0)--(9,9)--(0,9)--cycle,white,linewidth(1)); filldraw((0,0)--(7,0)--(7,7)--(0,7)--cycle,gray(0.7),linewidth(1)); filldraw((0,0)--(4,0)--(4,4)--(0,4)--cycle,white,linewidth(1)); draw((11,0)--(11,4),linewidth(1)); draw((11,6)--(11,10),linewidth(1)); label("1010",(11,5),fontsize(14pt)); draw((10.75,0)--(11.25,0),linewidth(1)); draw((10.75,10)--(11.25,10),linewidth(1)); draw((0,11)--(3,11),linewidth(1)); draw((5,11)--(9,11),linewidth(1)); draw((0,11.25)--(0,10.75),linewidth(1)); draw((9,11.25)--(9,10.75),linewidth(1)); label("99",(4,11),fontsize(14pt)); draw((-1,0)--(-1,1),linewidth(1)); draw((-1,3)--(-1,7),linewidth(1)); draw((-1.25,0)--(-0.75,0),linewidth(1)); draw((-1.25,7)--(-0.75,7),linewidth(1)); label("77",(-1,2),fontsize(14pt)); draw((0,-1)--(1,-1),linewidth(1)); draw((3,-1)--(4,-1),linewidth(1)); draw((0,-1.25)--(0,-.75),linewidth(1)); draw((4,-1.25)--(4,-.75),linewidth(1)); label("44",(2,-1),fontsize(14pt)); [/asy] <spanclass=latexbold>(A)</span> 42<spanclass=latexbold>(B)</span> 45<spanclass=latexbold>(C)</span> 49<spanclass=latexbold>(D)</span> 50<spanclass=latexbold>(E)</span> 52<span class='latex-bold'>(A)</span>\ 42 \qquad <span class='latex-bold'>(B)</span>\ 45\qquad <span class='latex-bold'>(C)</span>\ 49\qquad <span class='latex-bold'>(D)</span>\ 50\qquad <span class='latex-bold'>(E)</span>\ 52

Angles in Concentric Circle

Three concentric circles centered at OO have radii of 11, 22, and 33. Points BB and CC lie on the largest circle. The region between the two smaller circles is shaded, as is the portion of the region between the two larger circles bounded by central angle BOCBOC, as shown in the figure below. Suppose the shaded and unshaded regions are equal in area. What is the measure of BOC\angle{BOC} in degrees?
[asy] size(100); import graph;

draw(circle((0,0),3)); real radius = 3; real angleStart = -54; // starting angle of the sector real angleEnd = 54; // ending angle of the sector label("OO",(0,0),W); pair O = (0, 0); filldraw(arc(O, radius, angleStart, angleEnd)--O--cycle, lightgray); filldraw(circle((0,0),2),lightgray); filldraw(circle((0,0),1),white); draw((1.763,2.427)--(0,0)--(1.763,-2.427)); label("BB",(1.763,2.427),NE); label("CC",(1.763,-2.427),SE); [/asy]
<spanclass=latexbold>(A)</span> 108<spanclass=latexbold>(B)</span> 120<spanclass=latexbold>(C)</span> 135<spanclass=latexbold>(D)</span> 144<spanclass=latexbold>(E)</span> 150<span class='latex-bold'>(A)</span>\ 108 \qquad <span class='latex-bold'>(B)</span>\ 120 \qquad <span class='latex-bold'>(C)</span>\ 135 \qquad <span class='latex-bold'>(D)</span>\ 144 \qquad <span class='latex-bold'>(E)</span>\ 150

Graph Theory?!?!??!?2.?!!&gt;2r

The one-way routes connecting towns AA, MM, CC, XX, YY, and ZZ are shown in the figure below (not drawn to scale).The distances in kilometers along each route are marked. Traveling along these routes, what is the shortest distance from A to Z in kilometers?
[asy] /* AMC8 P14 2024, by NUMANA: BUI VAN HIEU */ import graph; unitsize(2cm); real r=0.25; // Define the nodes and their positions pair[] nodes = { (0,0), (2,0), (1,1), (3,1), (4,0), (6,0) }; string[] labels = { "A", "M", "X", "Y", "C", "Z" };
// Draw the nodes as circles with labels for(int i = 0; i < nodes.length; ++i) { draw(circle(nodes, r)); label(""+labels+"" + labels + "", nodes); } // Define the edges with their node indices and labels int[][] edges = { {0, 1}, {0, 2}, {2, 1}, {2, 3}, {1, 3}, {1, 4}, {3, 4}, {4, 5}, {3, 5} }; string[] edgeLabels = { "8", "5", "2", "10", "6", "14", "5", "10", "17" }; pair[] edgeLabelsPos = { S, SE, SW, S, SE, S, SW, S, NE}; // Draw the edges with labels for (int i = 0; i < edges.length; ++i) { pair start = nodes[edges[0]]; pair end = nodes[edges[1]]; draw(start + r*dir(end-start) -- end-r*dir(end-start), Arrow); label(""+edgeLabels+"" + edgeLabels + "", midpoint(start -- end), edgeLabelsPos); } // Draw the curved edge with label draw(nodes[1]+r * dir(-45)..controls (3, -0.75) and (5, -0.75)..nodes[5]+r * dir(-135), Arrow); label("2525", midpoint(nodes[1]..controls (3, -0.75) and (5, -0.75)..nodes[5]), 2S); [/asy]
<spanclass=latexbold>(A)</span> 28<spanclass=latexbold>(B)</span> 29<spanclass=latexbold>(C)</span> 30<spanclass=latexbold>(D)</span> 31<spanclass=latexbold>(E)</span> 32<span class='latex-bold'>(A)</span>\ 28 \qquad <span class='latex-bold'>(B)</span>\ 29 \qquad <span class='latex-bold'>(C)</span>\ 30 \qquad <span class='latex-bold'>(D)</span>\ 31 \qquad <span class='latex-bold'>(E)</span>\ 32

Stained Glass Artwork

Jean made a piece of stained glass art in the shape of two mountains, as shown in the figure below. One mountain peak is 88 feet high and the other peak is 1212 feet high. Each peak forms a 9090^\circ angle, and the straight sides of the mountains form 4545^\circ with the ground. The artwork has an area of 183183 square feet. The sides of the mountains meet at an intersection point near the center of the artwork, hh feet above the ground. What is the value of hh?
[asy] unitsize(.3cm); filldraw((0,0)--(8,8)--(11,5)--(18,12)--(30,0)--cycle,gray(0.7),linewidth(1)); draw((-1,0)--(-1,8),linewidth(.75)); draw((-1.4,0)--(-.6,0),linewidth(.75)); draw((-1.4,8)--(-.6,8),linewidth(.75)); label("88",(-1,4),W); label("1212",(31,6),E); draw((-1,8)--(8,8),dashed); draw((31,0)--(31,12),linewidth(.75)); draw((30.6,0)--(31.4,0),linewidth(.75)); draw((30.6,12)--(31.4,12),linewidth(.75)); draw((31,12)--(18,12),dashed); label("4545^{\circ}",(.75,0),NE,fontsize(10pt)); label("4545^{\circ}",(29.25,0),NW,fontsize(10pt)); draw((8,8)--(7.5,7.5)--(8,7)--(8.5,7.5)--cycle); draw((18,12)--(17.5,11.5)--(18,11)--(18.5,11.5)--cycle); draw((11,5)--(11,0),dashed); label("hh",(11,2.5),E); [/asy]
<spanclass=latexbold>(A)</span> 4<spanclass=latexbold>(B)</span> 5<spanclass=latexbold>(C)</span> 42<spanclass=latexbold>(D)</span> 6<spanclass=latexbold>(E)</span> 52<span class='latex-bold'>(A)</span>~4 \qquad <span class='latex-bold'>(B)</span>~5 \qquad <span class='latex-bold'>(C)</span>~4 \sqrt{2} \qquad <span class='latex-bold'>(D)</span>~6 \qquad <span class='latex-bold'>(E)</span>~5 \sqrt{2}
Credits to Countmath1 for the diagram.

Linecense

Rodrigo has a very large sheet of graph paper. First he draws a line segment connecting point (0,4)(0,4) to point (2,0)(2,0) and colors the 44 cells whose interiors intersect the segment, as shown below. Next Rodrigo draws a line segment connecting point (2000,3000)(2000,3000) to point (5000,8000)(5000,8000). How many cells will he color this time?
[asy] filldraw((0,4)--(1,4)--(1,3)--(0,3)--cycle, gray(.75), gray(.5)+linewidth(1)); filldraw((0,3)--(1,3)--(1,2)--(0,2)--cycle, gray(.75), gray(.5)+linewidth(1)); filldraw((1,2)--(2,2)--(2,1)--(1,1)--cycle, gray(.75), gray(.5)+linewidth(1)); filldraw((1,1)--(2,1)--(2,0)--(1,0)--cycle, gray(.75), gray(.5)+linewidth(1));
draw((-1,5)--(-1,-1),gray(.9)); draw((0,5)--(0,-1),gray(.9)); draw((1,5)--(1,-1),gray(.9)); draw((2,5)--(2,-1),gray(.9)); draw((3,5)--(3,-1),gray(.9)); draw((4,5)--(4,-1),gray(.9)); draw((5,5)--(5,-1),gray(.9));
draw((-1,5)--(5, 5),gray(.9)); draw((-1,4)--(5,4),gray(.9)); draw((-1,3)--(5,3),gray(.9)); draw((-1,2)--(5,2),gray(.9)); draw((-1,1)--(5,1),gray(.9)); draw((-1,0)--(5,0),gray(.9)); draw((-1,-1)--(5,-1),gray(.9));
dot((0,4)); label("(0,4)(0,4)",(0,4),NW);
dot((2,0)); label("(2,0)(2,0)",(2,0),SE);
draw((0,4)--(2,0));
draw((-1,0) -- (5,0), arrow=Arrow); draw((0,-1) -- (0,5), arrow=Arrow);
[/asy]
<spanclass=latexbold>(A)</span>6000<spanclass=latexbold>(B)</span>6500<spanclass=latexbold>(C)</span>7000<spanclass=latexbold>(D)</span>7500<spanclass=latexbold>(E)</span>8000<span class='latex-bold'>(A) </span>6000\qquad<span class='latex-bold'>(B) </span>6500\qquad<span class='latex-bold'>(C) </span>7000\qquad<span class='latex-bold'>(D) </span>7500\qquad<span class='latex-bold'>(E) </span>8000