Subcontests
(25)2010 AMC 8 - Problem 23 - The ratio of areas
Semicircles POQ and ROS pass through the center of circle O. What is the ratio of the combined areas of the two semicircles to the area of circle O?
[asy]
import graph; size(7.5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-6.27,xmax=10.01,ymin=-5.65,ymax=10.98; draw(circle((0,0),2)); draw((-3,0)--(3,0),EndArrow(6)); draw((0,-3)--(0,3),EndArrow(6)); draw(shift((0.01,1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,179.76,359.76)); draw(shift((-0.01,-1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,-0.38,179.62)); draw((-1.4,1.43)--(1.41,1.41)); draw((-1.42,-1.41)--(1.4,-1.42)); label("P(−1,1)",(-2.57,2.17),SE*lsf); label("Q(1,1)",(1.55,2.21),SE*lsf); label("R(−1,−1)",(-2.72,-1.45),SE*lsf); label("S(1,−1)",(1.59,-1.49),SE*lsf);
dot((0,0),ds); label("O",(-0.24,-0.35),NE*lsf); dot((1.41,1.41),ds); dot((-1.4,1.43),ds); dot((1.4,-1.42),ds); dot((-1.42,-1.41),ds);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]<spanclass=′latex−bold′>(A)</span> 42<spanclass=′latex−bold′>(B)</span> 21<spanclass=′latex−bold′>(C)</span> π2<spanclass=′latex−bold′>(D)</span> 32<spanclass=′latex−bold′>(E)</span> 22 2010 AMC 8 - Problem 19 - Area between the two circles
The two circles pictured have the same center C. Chord AD is tangent to the inner circle at B, AC is 10, and chord AD has length 16. What is the area between the two circles?[asy]
unitsize(45);
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1);
draw((2,0.15)--(1.85,0.15)--(1.85,0)--(2,0)--cycle); draw(circle((2,1),2.24)); draw(circle((2,1),1)); draw((0,0)--(4,0)); draw((0,0)--(2,1)); draw((2,1)--(2,0)); draw((2,1)--(4,0));
dot((0,0),ds); label("A", (-0.19,-0.23),NE*lsf); dot((2,0),ds); label("B", (1.97,-0.31),NE*lsf); dot((2,1),ds); label("C", (1.96,1.09),NE*lsf); dot((4,0),ds); label("D", (4.07,-0.24),NE*lsf); clip((-3.1,-7.72)--(-3.1,4.77)--(11.74,4.77)--(11.74,-7.72)--cycle);
[/asy]<spanclass=′latex−bold′>(A)</span> 36π<spanclass=′latex−bold′>(B)</span> 49π<spanclass=′latex−bold′>(C)</span> 64π<spanclass=′latex−bold′>(D)</span> 81π<spanclass=′latex−bold′>(E)</span> 100π 2010 AMC 8 - Problem 17 - Find the ratio XQ/QY
The diagram shows an octagon consisting of 10 unit squares. The portion below PQ is a unit square and a triangle with base 5. If PQ bisects the area of the octagon, what is the ratio QYXQ?[asy] import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); draw((0,0)--(6,0),linewidth(1.2pt)); draw((0,0)--(0,1),linewidth(1.2pt)); draw((0,1)--(1,1),linewidth(1.2pt)); draw((1,1)--(1,2),linewidth(1.2pt)); draw((1,2)--(5,2),linewidth(1.2pt)); draw((5,2)--(5,1),linewidth(1.2pt)); draw((5,1)--(6,1),linewidth(1.2pt)); draw((6,1)--(6,0),linewidth(1.2pt));draw((1,1)--(5,1),linewidth(1.2pt)); draw((1,1)--(1,0),linewidth(1.2pt));draw((2,2)--(2,0),linewidth(1.2pt)); draw((3,2)--(3,0),linewidth(1.2pt)); draw((4,2)--(4,0),linewidth(1.2pt)); draw((5,1)--(5,0),linewidth(1.2pt)); draw((0,0)--(5,1.5),linewidth(1.2pt)); dot((0,0),ds); label("P", (-0.23,-0.26),NE*lsf); dot((0,1),ds); dot((1,1),ds); dot((1,2),ds); dot((5,2),ds); label("X", (5.14,2.02),NE*lsf); dot((5,1),ds); label("Y", (5.12,1.14),NE*lsf); dot((6,1),ds); dot((6,0),ds); dot((1,0),ds); dot((2,0),ds); dot((3,0),ds); dot((4,0),ds); dot((5,0),ds); dot((2,2),ds); dot((3,2),ds); dot((4,2),ds); dot((5,1.5),ds); label("Q", (5.14,1.51),NE*lsf); clip((-4.19,-5.52)--(-4.19,6.5)--(10.08,6.5)--(10.08,-5.52)--cycle); [/asy]<spanclass=′latex−bold′>(A)</span> 52<spanclass=′latex−bold′>(B)</span> 21<spanclass=′latex−bold′>(C)</span> 53<spanclass=′latex−bold′>(D)</span> 32<spanclass=′latex−bold′>(E)</span> 43 2010 AMC 8 - Problem 3 - difference of highest and lowest
The graph shows the price of five gallons of gasoline during the first ten months of the year. By what percent is the highest price more than the lowest price?[asy]
import graph; size(12.5cm); real lsf=2; pathpen=linewidth(0.5); pointpen=black; pen fp = fontsize(10); pointfontpen=fp; real xmin=-1.33,xmax=11.05,ymin=-9.01,ymax=-0.44;
pen ycycyc=rgb(0.55,0.55,0.55);
pair A=(1,-6), B=(1,-2), D=(1,-5.8), E=(1,-5.6), F=(1,-5.4), G=(1,-5.2), H=(1,-5), J=(1,-4.8), K=(1,-4.6), L=(1,-4.4), M=(1,-4.2), N=(1,-4), P=(1,-3.8), Q=(1,-3.6), R=(1,-3.4), S=(1,-3.2), T=(1,-3), U=(1,-2.8), V=(1,-2.6), W=(1,-2.4), Z=(1,-2.2), E_1=(1.4,-2.6), F_1=(1.8,-2.6), O_1=(14,-6), P_1=(14,-5), Q_1=(14,-4), R_1=(14,-3), S_1=(14,-2), C_1=(1.4,-6), D_1=(1.8,-6), G_1=(2.4,-6), H_1=(2.8,-6), I_1=(3.4,-6), J_1=(3.8,-6), K_1=(4.4,-6), L_1=(4.8,-6), M_1=(5.4,-6), N_1=(5.8,-6), T_1=(6.4,-6), U_1=(6.8,-6), V_1=(7.4,-6), W_1=(7.8,-6), Z_1=(8.4,-6), A_2=(8.8,-6), B_2=(9.4,-6), C_2=(9.8,-6), D_2=(10.4,-6), E_2=(10.8,-6), L_2=(2.4,-3.2), M_2=(2.8,-3.2), N_2=(3.4,-4), O_2=(3.8,-4), P_2=(4.4,-3.6), Q_2=(4.8,-3.6), R_2=(5.4,-3.6), S_2=(5.8,-3.6), T_2=(6.4,-3.4), U_2=(6.8,-3.4), V_2=(7.4,-3.8), W_2=(7.8,-3.8), Z_2=(8.4,-2.8), A_3=(8.8,-2.8), B_3=(9.4,-3.2), C_3=(9.8,-3.2), D_3=(10.4,-3.8), E_3=(10.8,-3.8);
filldraw(C_1--E_1--F_1--D_1--cycle,ycycyc); filldraw(G_1--L_2--M_2--H_1--cycle,ycycyc); filldraw(I_1--N_2--O_2--J_1--cycle,ycycyc); filldraw(K_1--P_2--Q_2--L_1--cycle,ycycyc); filldraw(M_1--R_2--S_2--N_1--cycle,ycycyc); filldraw(T_1--T_2--U_2--U_1--cycle,ycycyc); filldraw(V_1--V_2--W_2--W_1--cycle,ycycyc); filldraw(Z_1--Z_2--A_3--A_2--cycle,ycycyc); filldraw(B_2--B_3--C_3--C_2--cycle,ycycyc); filldraw(D_2--D_3--E_3--E_2--cycle,ycycyc); D(B--A,linewidth(0.4)); D(H--(8,-5),linewidth(0.4)); D(N--(8,-4),linewidth(0.4)); D(T--(8,-3),linewidth(0.4)); D(B--(8,-2),linewidth(0.4)); D(B--S_1); D(T--R_1); D(N--Q_1); D(H--P_1); D(A--O_1); D(C_1--E_1); D(E_1--F_1); D(F_1--D_1); D(D_1--C_1); D(G_1--L_2); D(L_2--M_2); D(M_2--H_1); D(H_1--G_1); D(I_1--N_2); D(N_2--O_2); D(O_2--J_1); D(J_1--I_1); D(K_1--P_2); D(P_2--Q_2); D(Q_2--L_1); D(L_1--K_1); D(M_1--R_2); D(R_2--S_2); D(S_2--N_1); D(N_1--M_1); D(T_1--T_2); D(T_2--U_2); D(U_2--U_1); D(U_1--T_1); D(V_1--V_2); D(V_2--W_2); D(W_2--W_1); D(W_1--V_1); D(Z_1--Z_2); D(Z_2--A_3); D(A_3--A_2); D(A_2--Z_1); D(B_2--B_3); D(B_3--C_3); D(C_3--C_2); D(C_2--B_2); D(D_2--D_3); D(D_3--E_3); D(E_3--E_2); D(E_2--D_2); label("0",(0.52,-5.77),SE*lsf,fp); label("\5",(0.3,−4.84),SE∗lsf,fp);label("$10",(0.2,−3.84),SE∗lsf,fp);label("$15",(0.2,−2.85),SE∗lsf,fp);label("$20",(0.2,−1.85),SE∗lsf,fp);label("\mathrm{Price}",(−.65,−3.84),SE∗lsf,fp);label("1",(1.45,−5.95),SE∗lsf,fp);label("2",(2.44,−5.95),SE∗lsf,fp);label("3",(3.44,−5.95),SE∗lsf,fp);label("4",(4.46,−5.95),SE∗lsf,fp);label("5",(5.43,−5.95),SE∗lsf,fp);label("6",(6.42,−5.95),SE∗lsf,fp);label("7",(7.44,−5.95),SE∗lsf,fp);label("8",(8.43,−5.95),SE∗lsf,fp);label("9",(9.44,−5.95),SE∗lsf,fp);label("10",(10.37,−5.95),SE∗lsf,fp);label("Month",(5.67,−6.43),SE∗lsf,fp);D(A,linewidth(1pt));D(B,linewidth(1pt));D(D,linewidth(1pt));D(E,linewidth(1pt));D(F,linewidth(1pt));D(G,linewidth(1pt));D(H,linewidth(1pt));D(J,linewidth(1pt));D(K,linewidth(1pt));D(L,linewidth(1pt));D(M,linewidth(1pt));D(N,linewidth(1pt));D(P,linewidth(1pt));D(Q,linewidth(1pt));D(R,linewidth(1pt));D(S,linewidth(1pt));D(T,linewidth(1pt));D(U,linewidth(1pt));D(V,linewidth(1pt));D(W,linewidth(1pt));D(Z,linewidth(1pt));D(E1,linewidth(1pt));D(F1,linewidth(1pt));D(O1,linewidth(1pt));D(P1,linewidth(1pt));D(Q1,linewidth(1pt));D(R1,linewidth(1pt));D(S1,linewidth(1pt));D(C1,linewidth(1pt));D(D1,linewidth(1pt));D(G1,linewidth(1pt));D(H1,linewidth(1pt));D(I1,linewidth(1pt));D(J1,linewidth(1pt));D(K1,linewidth(1pt));D(L1,linewidth(1pt));D(M1,linewidth(1pt));D(N1,linewidth(1pt));D(T1,linewidth(1pt));D(U1,linewidth(1pt));D(V1,linewidth(1pt));D(W1,linewidth(1pt));D(Z1,linewidth(1pt));D(A2,linewidth(1pt));D(B2,linewidth(1pt));D(C2,linewidth(1pt));D(D2,linewidth(1pt));D(E2,linewidth(1pt));D(L2,linewidth(1pt));D(M2,linewidth(1pt));D(N2,linewidth(1pt));D(O2,linewidth(1pt));D(P2,linewidth(1pt));D(Q2,linewidth(1pt));D(R2,linewidth(1pt));D(S2,linewidth(1pt));D(T2,linewidth(1pt));D(U2,linewidth(1pt));D(V2,linewidth(1pt));D(W2,linewidth(1pt));D(Z2,linewidth(1pt));D(A3,linewidth(1pt));D(B3,linewidth(1pt));D(C3,linewidth(1pt));D(D3,linewidth(1pt));D(E3,linewidth(1pt));clip((xmin,ymin)−−(xmin,ymax)−−(xmax,ymax)−−(xmax,ymin)−−cycle);[/asy]</br>(A)\ 50 \qquad
(B)\ 62 \qquad
(C)\ 70 \qquad
(D)\ 89 \qquad
(E)\ 100$ 2010 AMC 8 #18
A decorative window is made up of a rectangle with semicircles at either end. The ratio of AD to AB is 3:2. And AB is 30 inches. What is the ratio of the area of the rectangle to the combined area of the semicircle. [asy]
import graph; size(5cm); real lsf=0; pen dps=linewidth(0.7)+fontsize(8); defaultpen(dps); pen ds=black; real xmin=-4.27,xmax=14.73,ymin=-3.22,ymax=6.8; draw((0,4)--(0,0)); draw((0,0)--(2.5,0)); draw((2.5,0)--(2.5,4)); draw((2.5,4)--(0,4)); draw(shift((1.25,4))*xscale(1.25)*yscale(1.25)*arc((0,0),1,0,180)); draw(shift((1.25,0))*xscale(1.25)*yscale(1.25)*arc((0,0),1,-180,0));
dot((0,0),ds); label("A",(-0.26,-0.23),NE*lsf); dot((2.5,0),ds); label("B",(2.61,-0.26),NE*lsf); dot((0,4),ds); label("D",(-0.26,4.02),NE*lsf); dot((2.5,4),ds); label("C",(2.64,3.98),NE*lsf);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]<spanclass=′latex−bold′>(A)</span> 2:3<spanclass=′latex−bold′>(B)</span> 3:2<spanclass=′latex−bold′>(C)</span> 6:π<spanclass=′latex−bold′>(D)</span> 9:π<spanclass=′latex−bold′>(E)</span> 30:π 2010 AMC 8 #4
What is the sum of the mean, median, and mode of the numbers, 2,3,0,3,1,4,0,3? <spanclass=′latex−bold′>(A)</span> 6.5<spanclass=′latex−bold′>(B)</span> 7<spanclass=′latex−bold′>(C)</span> 7.5<spanclass=′latex−bold′>(D)</span> 8.5<spanclass=′latex−bold′>(E)</span> 9