MathDB

2010 AMC 8

Part of AMC 8

Subcontests

(25)

2010 AMC 8 - Problem 23 - The ratio of areas

Semicircles POQPOQ and ROSROS pass through the center of circle OO. What is the ratio of the combined areas of the two semicircles to the area of circle OO? [asy] import graph; size(7.5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-6.27,xmax=10.01,ymin=-5.65,ymax=10.98; draw(circle((0,0),2)); draw((-3,0)--(3,0),EndArrow(6)); draw((0,-3)--(0,3),EndArrow(6)); draw(shift((0.01,1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,179.76,359.76)); draw(shift((-0.01,-1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,-0.38,179.62)); draw((-1.4,1.43)--(1.41,1.41)); draw((-1.42,-1.41)--(1.4,-1.42)); label("P(1,1) P(-1,1) ",(-2.57,2.17),SE*lsf); label("Q(1,1) Q(1,1) ",(1.55,2.21),SE*lsf); label("R(1,1) R(-1,-1) ",(-2.72,-1.45),SE*lsf); label("S(1,1)S(1,-1)",(1.59,-1.49),SE*lsf); dot((0,0),ds); label("OO",(-0.24,-0.35),NE*lsf); dot((1.41,1.41),ds); dot((-1.4,1.43),ds); dot((1.4,-1.42),ds); dot((-1.42,-1.41),ds); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
<spanclass=latexbold>(A)</span> 24<spanclass=latexbold>(B)</span> 12<spanclass=latexbold>(C)</span> 2π<spanclass=latexbold>(D)</span> 23<spanclass=latexbold>(E)</span> 22 <span class='latex-bold'>(A)</span>\ \frac{\sqrt 2}4 \qquad<span class='latex-bold'>(B)</span>\ \frac 12 \qquad<span class='latex-bold'>(C)</span>\ \frac{2}{\pi} \qquad<span class='latex-bold'>(D)</span>\ \frac{2}{3}\qquad<span class='latex-bold'>(E)</span>\ \frac{\sqrt 2}{2}

2010 AMC 8 - Problem 19 - Area between the two circles

The two circles pictured have the same center CC. Chord AD\overline{AD} is tangent to the inner circle at BB, ACAC is 1010, and chord AD\overline{AD} has length 1616. What is the area between the two circles?
[asy] unitsize(45); import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); draw((2,0.15)--(1.85,0.15)--(1.85,0)--(2,0)--cycle); draw(circle((2,1),2.24)); draw(circle((2,1),1)); draw((0,0)--(4,0)); draw((0,0)--(2,1)); draw((2,1)--(2,0)); draw((2,1)--(4,0)); dot((0,0),ds); label("AA", (-0.19,-0.23),NE*lsf); dot((2,0),ds); label("BB", (1.97,-0.31),NE*lsf); dot((2,1),ds); label("CC", (1.96,1.09),NE*lsf); dot((4,0),ds); label("DD", (4.07,-0.24),NE*lsf); clip((-3.1,-7.72)--(-3.1,4.77)--(11.74,4.77)--(11.74,-7.72)--cycle); [/asy]
<spanclass=latexbold>(A)</span> 36π<spanclass=latexbold>(B)</span> 49π<spanclass=latexbold>(C)</span> 64π<spanclass=latexbold>(D)</span> 81π<spanclass=latexbold>(E)</span> 100π <span class='latex-bold'>(A)</span>\ 36 \pi \qquad<span class='latex-bold'>(B)</span>\ 49 \pi\qquad<span class='latex-bold'>(C)</span>\ 64 \pi\qquad<span class='latex-bold'>(D)</span>\ 81 \pi\qquad<span class='latex-bold'>(E)</span>\ 100 \pi

2010 AMC 8 - Problem 17 - Find the ratio XQ/QY

The diagram shows an octagon consisting of 1010 unit squares. The portion below PQ\overline{PQ} is a unit square and a triangle with base 55. If PQ\overline{PQ} bisects the area of the octagon, what is the ratio XQQY\frac{XQ}{QY}?
[asy] import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); draw((0,0)--(6,0),linewidth(1.2pt)); draw((0,0)--(0,1),linewidth(1.2pt)); draw((0,1)--(1,1),linewidth(1.2pt)); draw((1,1)--(1,2),linewidth(1.2pt)); draw((1,2)--(5,2),linewidth(1.2pt)); draw((5,2)--(5,1),linewidth(1.2pt)); draw((5,1)--(6,1),linewidth(1.2pt)); draw((6,1)--(6,0),linewidth(1.2pt));draw((1,1)--(5,1),linewidth(1.2pt)); draw((1,1)--(1,0),linewidth(1.2pt));draw((2,2)--(2,0),linewidth(1.2pt)); draw((3,2)--(3,0),linewidth(1.2pt)); draw((4,2)--(4,0),linewidth(1.2pt)); draw((5,1)--(5,0),linewidth(1.2pt)); draw((0,0)--(5,1.5),linewidth(1.2pt)); dot((0,0),ds); label("PP", (-0.23,-0.26),NE*lsf); dot((0,1),ds); dot((1,1),ds); dot((1,2),ds); dot((5,2),ds); label("XX", (5.14,2.02),NE*lsf); dot((5,1),ds); label("YY", (5.12,1.14),NE*lsf); dot((6,1),ds); dot((6,0),ds); dot((1,0),ds); dot((2,0),ds); dot((3,0),ds); dot((4,0),ds); dot((5,0),ds); dot((2,2),ds); dot((3,2),ds); dot((4,2),ds); dot((5,1.5),ds); label("QQ", (5.14,1.51),NE*lsf); clip((-4.19,-5.52)--(-4.19,6.5)--(10.08,6.5)--(10.08,-5.52)--cycle); [/asy]
<spanclass=latexbold>(A)</span> 25<spanclass=latexbold>(B)</span> 12<spanclass=latexbold>(C)</span> 35<spanclass=latexbold>(D)</span> 23<spanclass=latexbold>(E)</span> 34<span class='latex-bold'>(A)</span>\ \frac 25 \qquad <span class='latex-bold'>(B)</span>\ \frac 12 \qquad <span class='latex-bold'>(C)</span>\ \frac 35 \qquad <span class='latex-bold'>(D)</span>\ \frac 23 \qquad <span class='latex-bold'>(E)</span>\ \frac 34
3
1

2010 AMC 8 - Problem 3 - difference of highest and lowest

The graph shows the price of five gallons of gasoline during the first ten months of the year. By what percent is the highest price more than the lowest price?
[asy] import graph; size(12.5cm); real lsf=2; pathpen=linewidth(0.5); pointpen=black; pen fp = fontsize(10); pointfontpen=fp; real xmin=-1.33,xmax=11.05,ymin=-9.01,ymax=-0.44; pen ycycyc=rgb(0.55,0.55,0.55); pair A=(1,-6), B=(1,-2), D=(1,-5.8), E=(1,-5.6), F=(1,-5.4), G=(1,-5.2), H=(1,-5), J=(1,-4.8), K=(1,-4.6), L=(1,-4.4), M=(1,-4.2), N=(1,-4), P=(1,-3.8), Q=(1,-3.6), R=(1,-3.4), S=(1,-3.2), T=(1,-3), U=(1,-2.8), V=(1,-2.6), W=(1,-2.4), Z=(1,-2.2), E_1=(1.4,-2.6), F_1=(1.8,-2.6), O_1=(14,-6), P_1=(14,-5), Q_1=(14,-4), R_1=(14,-3), S_1=(14,-2), C_1=(1.4,-6), D_1=(1.8,-6), G_1=(2.4,-6), H_1=(2.8,-6), I_1=(3.4,-6), J_1=(3.8,-6), K_1=(4.4,-6), L_1=(4.8,-6), M_1=(5.4,-6), N_1=(5.8,-6), T_1=(6.4,-6), U_1=(6.8,-6), V_1=(7.4,-6), W_1=(7.8,-6), Z_1=(8.4,-6), A_2=(8.8,-6), B_2=(9.4,-6), C_2=(9.8,-6), D_2=(10.4,-6), E_2=(10.8,-6), L_2=(2.4,-3.2), M_2=(2.8,-3.2), N_2=(3.4,-4), O_2=(3.8,-4), P_2=(4.4,-3.6), Q_2=(4.8,-3.6), R_2=(5.4,-3.6), S_2=(5.8,-3.6), T_2=(6.4,-3.4), U_2=(6.8,-3.4), V_2=(7.4,-3.8), W_2=(7.8,-3.8), Z_2=(8.4,-2.8), A_3=(8.8,-2.8), B_3=(9.4,-3.2), C_3=(9.8,-3.2), D_3=(10.4,-3.8), E_3=(10.8,-3.8); filldraw(C_1--E_1--F_1--D_1--cycle,ycycyc); filldraw(G_1--L_2--M_2--H_1--cycle,ycycyc); filldraw(I_1--N_2--O_2--J_1--cycle,ycycyc); filldraw(K_1--P_2--Q_2--L_1--cycle,ycycyc); filldraw(M_1--R_2--S_2--N_1--cycle,ycycyc); filldraw(T_1--T_2--U_2--U_1--cycle,ycycyc); filldraw(V_1--V_2--W_2--W_1--cycle,ycycyc); filldraw(Z_1--Z_2--A_3--A_2--cycle,ycycyc); filldraw(B_2--B_3--C_3--C_2--cycle,ycycyc); filldraw(D_2--D_3--E_3--E_2--cycle,ycycyc); D(B--A,linewidth(0.4)); D(H--(8,-5),linewidth(0.4)); D(N--(8,-4),linewidth(0.4)); D(T--(8,-3),linewidth(0.4)); D(B--(8,-2),linewidth(0.4)); D(B--S_1); D(T--R_1); D(N--Q_1); D(H--P_1); D(A--O_1); D(C_1--E_1); D(E_1--F_1); D(F_1--D_1); D(D_1--C_1); D(G_1--L_2); D(L_2--M_2); D(M_2--H_1); D(H_1--G_1); D(I_1--N_2); D(N_2--O_2); D(O_2--J_1); D(J_1--I_1); D(K_1--P_2); D(P_2--Q_2); D(Q_2--L_1); D(L_1--K_1); D(M_1--R_2); D(R_2--S_2); D(S_2--N_1); D(N_1--M_1); D(T_1--T_2); D(T_2--U_2); D(U_2--U_1); D(U_1--T_1); D(V_1--V_2); D(V_2--W_2); D(W_2--W_1); D(W_1--V_1); D(Z_1--Z_2); D(Z_2--A_3); D(A_3--A_2); D(A_2--Z_1); D(B_2--B_3); D(B_3--C_3); D(C_3--C_2); D(C_2--B_2); D(D_2--D_3); D(D_3--E_3); D(E_3--E_2); D(E_2--D_2); label("0",(0.52,-5.77),SE*lsf,fp); label("\5",(0.3,4.84),SElsf,fp);label("$10",(0.2,3.84),SElsf,fp);label("$15",(0.2,2.85),SElsf,fp);label("$20",(0.2,1.85),SElsf,fp);label(" 5",(0.3,-4.84),SE*lsf,fp); label("\$ 10",(0.2,-3.84),SE*lsf,fp); label("\$ 15",(0.2,-2.85),SE*lsf,fp); label("\$ 20",(0.2,-1.85),SE*lsf,fp); label("\mathrm{Price}",(.65,3.84),SElsf,fp);label("",(-.65,-3.84),SE*lsf,fp); label("1",(1.45,5.95),SElsf,fp);label("",(1.45,-5.95),SE*lsf,fp); label("2",(2.44,5.95),SElsf,fp);label("",(2.44,-5.95),SE*lsf,fp); label("3",(3.44,5.95),SElsf,fp);label("",(3.44,-5.95),SE*lsf,fp); label("4",(4.46,5.95),SElsf,fp);label("",(4.46,-5.95),SE*lsf,fp); label("5",(5.43,5.95),SElsf,fp);label("",(5.43,-5.95),SE*lsf,fp); label("6",(6.42,5.95),SElsf,fp);label("",(6.42,-5.95),SE*lsf,fp); label("7",(7.44,5.95),SElsf,fp);label("",(7.44,-5.95),SE*lsf,fp); label("8",(8.43,5.95),SElsf,fp);label("",(8.43,-5.95),SE*lsf,fp); label("9",(9.44,5.95),SElsf,fp);label("",(9.44,-5.95),SE*lsf,fp); label("10",(10.37,5.95),SElsf,fp);label("Month",(5.67,6.43),SElsf,fp);D(A,linewidth(1pt));D(B,linewidth(1pt));D(D,linewidth(1pt));D(E,linewidth(1pt));D(F,linewidth(1pt));D(G,linewidth(1pt));D(H,linewidth(1pt));D(J,linewidth(1pt));D(K,linewidth(1pt));D(L,linewidth(1pt));D(M,linewidth(1pt));D(N,linewidth(1pt));D(P,linewidth(1pt));D(Q,linewidth(1pt));D(R,linewidth(1pt));D(S,linewidth(1pt));D(T,linewidth(1pt));D(U,linewidth(1pt));D(V,linewidth(1pt));D(W,linewidth(1pt));D(Z,linewidth(1pt));D(E1,linewidth(1pt));D(F1,linewidth(1pt));D(O1,linewidth(1pt));D(P1,linewidth(1pt));D(Q1,linewidth(1pt));D(R1,linewidth(1pt));D(S1,linewidth(1pt));D(C1,linewidth(1pt));D(D1,linewidth(1pt));D(G1,linewidth(1pt));D(H1,linewidth(1pt));D(I1,linewidth(1pt));D(J1,linewidth(1pt));D(K1,linewidth(1pt));D(L1,linewidth(1pt));D(M1,linewidth(1pt));D(N1,linewidth(1pt));D(T1,linewidth(1pt));D(U1,linewidth(1pt));D(V1,linewidth(1pt));D(W1,linewidth(1pt));D(Z1,linewidth(1pt));D(A2,linewidth(1pt));D(B2,linewidth(1pt));D(C2,linewidth(1pt));D(D2,linewidth(1pt));D(E2,linewidth(1pt));D(L2,linewidth(1pt));D(M2,linewidth(1pt));D(N2,linewidth(1pt));D(O2,linewidth(1pt));D(P2,linewidth(1pt));D(Q2,linewidth(1pt));D(R2,linewidth(1pt));D(S2,linewidth(1pt));D(T2,linewidth(1pt));D(U2,linewidth(1pt));D(V2,linewidth(1pt));D(W2,linewidth(1pt));D(Z2,linewidth(1pt));D(A3,linewidth(1pt));D(B3,linewidth(1pt));D(C3,linewidth(1pt));D(D3,linewidth(1pt));D(E3,linewidth(1pt));clip((xmin,ymin)(xmin,ymax)(xmax,ymax)(xmax,ymin)cycle);[/asy]</br>",(10.37,-5.95),SE*lsf,fp); label("Month",(5.67,-6.43),SE*lsf,fp); D(A,linewidth(1pt)); D(B,linewidth(1pt)); D(D,linewidth(1pt)); D(E,linewidth(1pt)); D(F,linewidth(1pt)); D(G,linewidth(1pt)); D(H,linewidth(1pt)); D(J,linewidth(1pt)); D(K,linewidth(1pt)); D(L,linewidth(1pt)); D(M,linewidth(1pt)); D(N,linewidth(1pt)); D(P,linewidth(1pt)); D(Q,linewidth(1pt)); D(R,linewidth(1pt)); D(S,linewidth(1pt)); D(T,linewidth(1pt)); D(U,linewidth(1pt)); D(V,linewidth(1pt)); D(W,linewidth(1pt)); D(Z,linewidth(1pt)); D(E_1,linewidth(1pt)); D(F_1,linewidth(1pt)); D(O_1,linewidth(1pt)); D(P_1,linewidth(1pt)); D(Q_1,linewidth(1pt)); D(R_1,linewidth(1pt)); D(S_1,linewidth(1pt)); D(C_1,linewidth(1pt)); D(D_1,linewidth(1pt)); D(G_1,linewidth(1pt)); D(H_1,linewidth(1pt)); D(I_1,linewidth(1pt)); D(J_1,linewidth(1pt)); D(K_1,linewidth(1pt)); D(L_1,linewidth(1pt)); D(M_1,linewidth(1pt)); D(N_1,linewidth(1pt)); D(T_1,linewidth(1pt)); D(U_1,linewidth(1pt)); D(V_1,linewidth(1pt)); D(W_1,linewidth(1pt)); D(Z_1,linewidth(1pt)); D(A_2,linewidth(1pt)); D(B_2,linewidth(1pt)); D(C_2,linewidth(1pt)); D(D_2,linewidth(1pt)); D(E_2,linewidth(1pt)); D(L_2,linewidth(1pt)); D(M_2,linewidth(1pt)); D(N_2,linewidth(1pt)); D(O_2,linewidth(1pt)); D(P_2,linewidth(1pt)); D(Q_2,linewidth(1pt)); D(R_2,linewidth(1pt)); D(S_2,linewidth(1pt)); D(T_2,linewidth(1pt)); D(U_2,linewidth(1pt)); D(V_2,linewidth(1pt)); D(W_2,linewidth(1pt)); D(Z_2,linewidth(1pt)); D(A_3,linewidth(1pt)); D(B_3,linewidth(1pt)); D(C_3,linewidth(1pt)); D(D_3,linewidth(1pt)); D(E_3,linewidth(1pt)); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]</br>(A)\ 50 \qquad (B)\ 62 \qquad (C)\ 70 \qquad (D)\ 89 \qquad (E)\ 100$

2010 AMC 8 #18

A decorative window is made up of a rectangle with semicircles at either end. The ratio of ADAD to ABAB is 3:23:2. And ABAB is 30 inches. What is the ratio of the area of the rectangle to the combined area of the semicircle.
[asy] import graph; size(5cm); real lsf=0; pen dps=linewidth(0.7)+fontsize(8); defaultpen(dps); pen ds=black; real xmin=-4.27,xmax=14.73,ymin=-3.22,ymax=6.8; draw((0,4)--(0,0)); draw((0,0)--(2.5,0)); draw((2.5,0)--(2.5,4)); draw((2.5,4)--(0,4)); draw(shift((1.25,4))*xscale(1.25)*yscale(1.25)*arc((0,0),1,0,180)); draw(shift((1.25,0))*xscale(1.25)*yscale(1.25)*arc((0,0),1,-180,0)); dot((0,0),ds); label("AA",(-0.26,-0.23),NE*lsf); dot((2.5,0),ds); label("BB",(2.61,-0.26),NE*lsf); dot((0,4),ds); label("DD",(-0.26,4.02),NE*lsf); dot((2.5,4),ds); label("CC",(2.64,3.98),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]
<spanclass=latexbold>(A)</span> 2:3<spanclass=latexbold>(B)</span> 3:2<spanclass=latexbold>(C)</span> 6:π<spanclass=latexbold>(D)</span> 9:π<spanclass=latexbold>(E)</span> 30:π <span class='latex-bold'>(A)</span>\ 2:3 \qquad<span class='latex-bold'>(B)</span>\ 3:2\qquad<span class='latex-bold'>(C)</span>\ 6:\pi \qquad<span class='latex-bold'>(D)</span>\ 9: \pi \qquad<span class='latex-bold'>(E)</span>\ 30 : \pi