MathDB
2010 AMC 8 - Problem 23 - The ratio of areas

Source:

May 30, 2011
ratiogeometry

Problem Statement

Semicircles POQPOQ and ROSROS pass through the center of circle OO. What is the ratio of the combined areas of the two semicircles to the area of circle OO? [asy] import graph; size(7.5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-6.27,xmax=10.01,ymin=-5.65,ymax=10.98; draw(circle((0,0),2)); draw((-3,0)--(3,0),EndArrow(6)); draw((0,-3)--(0,3),EndArrow(6)); draw(shift((0.01,1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,179.76,359.76)); draw(shift((-0.01,-1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,-0.38,179.62)); draw((-1.4,1.43)--(1.41,1.41)); draw((-1.42,-1.41)--(1.4,-1.42)); label("P(1,1) P(-1,1) ",(-2.57,2.17),SE*lsf); label("Q(1,1) Q(1,1) ",(1.55,2.21),SE*lsf); label("R(1,1) R(-1,-1) ",(-2.72,-1.45),SE*lsf); label("S(1,1)S(1,-1)",(1.59,-1.49),SE*lsf); dot((0,0),ds); label("OO",(-0.24,-0.35),NE*lsf); dot((1.41,1.41),ds); dot((-1.4,1.43),ds); dot((1.4,-1.42),ds); dot((-1.42,-1.41),ds); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
<spanclass=latexbold>(A)</span> 24<spanclass=latexbold>(B)</span> 12<spanclass=latexbold>(C)</span> 2π<spanclass=latexbold>(D)</span> 23<spanclass=latexbold>(E)</span> 22 <span class='latex-bold'>(A)</span>\ \frac{\sqrt 2}4 \qquad<span class='latex-bold'>(B)</span>\ \frac 12 \qquad<span class='latex-bold'>(C)</span>\ \frac{2}{\pi} \qquad<span class='latex-bold'>(D)</span>\ \frac{2}{3}\qquad<span class='latex-bold'>(E)</span>\ \frac{\sqrt 2}{2}