MathDB

2001 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(18)

Geometry (Out of unique title for this one)

In rectangle ABCD ABCD, points F F and G G lie on AB \overline{AB} so that AF \equal{} FG \equal{} GB and E E is the midpoint of DC \overline{DC}. Also, AC \overline{AC} intersects EF \overline{EF} at H H and EG \overline{EG} at J J. The area of the rectangle ABCD ABCD is 70 70. Find the area of triangle EHJ EHJ. [asy] size(180); pair A, B, C, D, E, F, G, H, J; A = origin; real length = 6; real width = 3.5; B = length*dir(0); C = (length, width); D = width*dir(90); F = length/3*dir(0); G = 2*length/3*dir(0); E = (length/2, width); H = extension(A, C, E, F); J = extension(A, C, E, G);
draw(A--B--C--D--cycle); draw(G--E--F); draw(A--C);
label("AA", A, dir(180)); label("DD", D, dir(180)); label("BB", B, dir(0)); label("CC", C, dir(0)); label("FF", F, dir(270)); label("EE", E, dir(90)); label("GG", G, dir(270)); label("HH", H, dir(140)); label("JJ", J, dir(340)); [/asy] <spanclass=latexbold>(A)</span> 52<spanclass=latexbold>(B)</span> 3512<spanclass=latexbold>(C)</span> 3<spanclass=latexbold>(D)</span> 72<spanclass=latexbold>(E)</span> 358 \displaystyle <span class='latex-bold'>(A)</span> \ \frac {5}{2} \qquad <span class='latex-bold'>(B)</span> \ \frac {35}{12} \qquad <span class='latex-bold'>(C)</span> \ 3 \qquad <span class='latex-bold'>(D)</span> \ \frac {7}{2} \qquad <span class='latex-bold'>(E)</span> \ \frac {35}{8}