Geometry (Out of unique title for this one)
Source: 2001 AMC-12 #22
December 4, 2005
geometryrectangleanalytic geometrylinear algebramatrixratiotrigonometry
Problem Statement
In rectangle , points and lie on so that AF \equal{} FG \equal{} GB and is the midpoint of . Also, intersects at and at . The area of the rectangle is . Find the area of triangle .
[asy]
size(180);
pair A, B, C, D, E, F, G, H, J;
A = origin;
real length = 6;
real width = 3.5;
B = length*dir(0);
C = (length, width);
D = width*dir(90);
F = length/3*dir(0);
G = 2*length/3*dir(0);
E = (length/2, width);
H = extension(A, C, E, F);
J = extension(A, C, E, G);draw(A--B--C--D--cycle);
draw(G--E--F);
draw(A--C);label("", A, dir(180));
label("", D, dir(180));
label("", B, dir(0));
label("", C, dir(0));
label("", F, dir(270));
label("", E, dir(90));
label("", G, dir(270));
label("", H, dir(140));
label("", J, dir(340));
[/asy]