MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
2001 AMC 12/AHSME
9
9
Part of
2001 AMC 12/AHSME
Problems
(1)
Function problem
Source:
12/3/2005
Let
f
f
f
be a function satisfying f(xy) \equal{} f(x)/y for all positive real numbers
x
x
x
and
y
y
y
. If f(500) \equal{} 3, what is the value of
f
(
600
)
f(600)
f
(
600
)
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
5
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
18
5
<span class='latex-bold'>(A)</span> \ 1 \qquad <span class='latex-bold'>(B)</span> \ 2 \qquad <span class='latex-bold'>(C)</span> \ \displaystyle \frac {5}{2} \qquad <span class='latex-bold'>(D)</span> \ 3 \qquad <span class='latex-bold'>(E)</span> \ \displaystyle \frac {18}{5}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
2
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
5
18
function