Subcontests
(25)2000 AMC 10 #5
Points M and N are the midpoints of sides PA and PB of △PAB. As P moves along a line that is parallel to side AB, how many of the four quantities listed below change?(A) the length of the segmentMN(B) the perimeter of △PAB(C) the area of △PAB(D) the area of trapezoidABNM
[asy]
draw((2,0)--(8,0)--(6,4)--cycle);
draw((4,2)--(7,2));
draw((1,4)--(9,4),Arrows);
label("A",(2,0),SW);
label("B",(8,0),SE);
label("M",(4,2),W);
label("N",(7,2),E);
label("P",(6,4),N);[/asy](A) 0(B) 1(C) 2(D) 3(E) 4 Super Easy Exponents
2000(2000^{2000}) \equal{}
<spanclass=′latex−bold′>(A)</span> 20002001<spanclass=′latex−bold′>(B)</span> 40002000<spanclass=′latex−bold′>(C)</span> 20004000<spanclass=′latex−bold′>(D)</span> 4,000,0002000<spanclass=′latex−bold′>(E)</span> 20004,000,000 Lattice points
The diagram show 28 lattice points, each one unit from its nearest neighbors. Segment AB meets segment CD at E. Find the length of segment AE.[asy]
path seg1, seg2;
seg1=(6,0)--(0,3);
seg2=(2,0)--(4,2);
dot((0,0));
dot((1,0));
fill(circle((2,0),0.1),black);
dot((3,0));
dot((4,0));
dot((5,0));
fill(circle((6,0),0.1),black);
dot((0,1));
dot((1,1));
dot((2,1));
dot((3,1));
dot((4,1));
dot((5,1));
dot((6,1));
dot((0,2));
dot((1,2));
dot((2,2));
dot((3,2));
fill(circle((4,2),0.1),black);
dot((5,2));
dot((6,2));
fill(circle((0,3),0.1),black);
dot((1,3));
dot((2,3));
dot((3,3));
dot((4,3));
dot((5,3));
dot((6,3));
draw(seg1);
draw(seg2);
pair [] x=intersectionpoints(seg1,seg2);
fill(circle(x[0],0.1),black);
label("A",(0,3),NW);
label("B",(6,0),SE);
label("C",(4,2),NE);
label("D",(2,0),S);
label("E",x[0],N);[/asy](A) 345(B) 355(C) 7125(D) 25(E) 9565 Peg positions
There are 5 yellow pegs, 4 red pegs, 3 green pegs, 2 blue pegs, and 1 orange peg on a triangular peg board. In how many ways can the pegs be placed so that no (horizontal) row or (vertical) column contains two pegs of the same color?[asy]
unitsize(20);
dot((0,0));
dot((1,0));
dot((2,0));
dot((3,0));
dot((4,0));
dot((0,1));
dot((1,1));
dot((2,1));
dot((3,1));
dot((0,2));
dot((1,2));
dot((2,2));
dot((0,3));
dot((1,3));
dot((0,4));[/asy](A) 0(B) 1(C) 5!⋅4!⋅3!⋅2!⋅1!(D) 5!⋅4!⋅3!⋅2!⋅1!15!(E) 15! Rectangle
In rectangle ABCD, AD \equal{} 1, P is on AB, and DB and DP trisect ∠ADC. What is the perimeter of △BDP?
[asy]unitsize(2cm);
defaultpen(linewidth(.8pt));
dotfactor=4;pair D=(0,0), C=(sqrt(3),0), B=(sqrt(3),1), A=(0,1), P=(sqrt(3)/3,1);
pair[] dotted={A,B,C,D,P};draw(A--B--C--D--cycle);
draw(B--D--P);
dot(dotted);
label("A",A,NW);
label("B",B,NE);
label("C",C,SE);
label("D",D,SW);
label("P",P,N);[/asy] (A)\ 3 \plus{} \frac {\sqrt3}{3} \qquad(B)\ 2 \plus{} \frac {4\sqrt3}{3}\qquad(C)\ 2 \plus{} 2\sqrt2\qquad(D)\ \frac {3 \plus{} 3\sqrt5}{2} \qquad(E)\ 2 \plus{} \frac {5\sqrt3}{3} Arithmetic progression
When the mean, median, and mode of the list 10,2,5,2,4,2,x are arranged in increasing order, they form a non-constant arithmetic progression. What is the sum of all possible real values of x?
(A) 3(B) 6(C) 9(D) 17(E) 20 Square Pattern
Figures 0, 1, 2, and 3 consist of 1, 5, 13, and 25 nonoverlapping squares, respectively. If the pattern were continued, how many nonoverlapping squares would there be in figure 100?
[asy]
unitsize(8);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);
draw((9,0)--(10,0)--(10,3)--(9,3)--cycle);
draw((8,1)--(11,1)--(11,2)--(8,2)--cycle);
draw((19,0)--(20,0)--(20,5)--(19,5)--cycle);
draw((18,1)--(21,1)--(21,4)--(18,4)--cycle);
draw((17,2)--(22,2)--(22,3)--(17,3)--cycle);
draw((32,0)--(33,0)--(33,7)--(32,7)--cycle);
draw((29,3)--(36,3)--(36,4)--(29,4)--cycle);
draw((31,1)--(34,1)--(34,6)--(31,6)--cycle);
draw((30,2)--(35,2)--(35,5)--(30,5)--cycle);
label("Figure",(0.5,-1),S);
label("0",(0.5,-2.5),S);
label("Figure",(9.5,-1),S);
label("1",(9.5,-2.5),S);
label("Figure",(19.5,-1),S);
label("2",(19.5,-2.5),S);
label("Figure",(32.5,-1),S);
label("3",(32.5,-2.5),S);[/asy]<spanclass=′latex−bold′>(A)</span> 10401<spanclass=′latex−bold′>(B)</span> 19801<spanclass=′latex−bold′>(C)</span> 20201<spanclass=′latex−bold′>(D)</span> 39801<spanclass=′latex−bold′>(E)</span> 40801 Fibonacci Sequence
The Fibonacci Sequence 1,1,2,3,5,8,13,21,… starts with two 1s and each term afterwards is the sum of its predecessors. Which one of the ten digits is the last to appear in the units position of a number in the Fibonacci Sequence?<spanclass=′latex−bold′>(A)</span> 0<spanclass=′latex−bold′>(B)</span> 4<spanclass=′latex−bold′>(C)</span> 6<spanclass=′latex−bold′>(D)</span> 7<spanclass=′latex−bold′>(E)</span> 9