MathDB
IMO Problem

Source:

January 24, 2006

Problem Statement

In the year 2001 2001, the United States will host the International Mathematical Olympiad. Let I I, M M, and O O be distinct positive integers such that the product I\cdot M \cdot O \equal{} 2001. What's the largest possible value of the sum I \plus{} M \plus{} O? <spanclass=latexbold>(A)</span> 23<spanclass=latexbold>(B)</span> 55<spanclass=latexbold>(C)</span> 99<spanclass=latexbold>(D)</span> 111<spanclass=latexbold>(E)</span> 671 <span class='latex-bold'>(A)</span>\ 23 \qquad <span class='latex-bold'>(B)</span>\ 55 \qquad <span class='latex-bold'>(C)</span>\ 99 \qquad <span class='latex-bold'>(D)</span>\ 111 \qquad <span class='latex-bold'>(E)</span>\ 671