In the year 2001, the United States will host the International Mathematical Olympiad. Let I, M, and O be distinct positive integers such that the product I\cdot M \cdot O \equal{} 2001. What's the largest possible value of the sum I \plus{} M \plus{} O?
<spanclass=′latex−bold′>(A)</span>23<spanclass=′latex−bold′>(B)</span>55<spanclass=′latex−bold′>(C)</span>99<spanclass=′latex−bold′>(D)</span>111<spanclass=′latex−bold′>(E)</span>671