MathDB

2022 AIME Problems

Part of AIME Problems

Subcontests

(15)
9
2

When MAA can't decide between geo and combo

Let A\ell_A and B\ell_B be two distinct parallel lines. For positive integers mm and nn, distinct points A1,A2,A3,,AmA_1, A_2, \allowbreak A_3, \allowbreak \ldots, \allowbreak A_m lie on A\ell_A, and distinct points B1,B2,B3,,BnB_1, B_2, B_3, \ldots, B_n lie on B\ell_B. Additionally, when segments AiBj\overline{A_iB_j} are drawn for all i=1,2,3,,mi=1,2,3,\ldots, m and j=1,2,3,,nj=1,\allowbreak 2,\allowbreak 3, \ldots, \allowbreak n, no point strictly between A\ell_A and B\ell_B lies on more than two of the segments. Find the number of bounded regions into which this figure divides the plane when m=7m=7 and n=5n=5. The figure shows that there are 8 regions when m=3m=3 and n=2n=2. [asy] import geometry; size(10cm); draw((-2,0)--(13,0)); draw((0,4)--(10,4)); label("A\ell_A",(-2,0),W); label("B\ell_B",(0,4),W); point A1=(0,0),A2=(5,0),A3=(11,0),B1=(2,4),B2=(8,4),I1=extension(B1,A2,A1,B2),I2=extension(B1,A3,A1,B2),I3=extension(B1,A3,A2,B2); draw(B1--A1--B2); draw(B1--A2--B2); draw(B1--A3--B2); label("A1A_1",A1,S); label("A2A_2",A2,S); label("A3A_3",A3,S); label("B1B_1",B1,N); label("B2B_2",B2,N); label("1",centroid(A1,B1,I1)); label("2",centroid(B1,I1,I3)); label("3",centroid(B1,B2,I3)); label("4",centroid(A1,A2,I1)); label("5",(A2+I1+I2+I3)/4); label("6",centroid(B2,I2,I3)); label("7",centroid(A2,A3,I2)); label("8",centroid(A3,B2,I2)); dot(A1); dot(A2); dot(A3); dot(B1); dot(B2); [/asy]